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l/INTRODUCTION 

A great variety of thin-walled shells are used in the structures of missile and space 
launch hardware. Development of mathematical models of cylindrical launch vehicles, 
consequently, requires dynamic analysis of many structures which fall within the 
realm of shell theory. A detailed knowledge of the dynamics of a launch vehicle 
structure is required for analysis of vehicle stability and control, since the dynamics 
of the structure affects the motion of the primary control elements and introduces 
extraneous signals into the feedback (motion) sensors on the vehicle. Proper evalua- 
tion of launch vehicle dynamics thus requires a knowledge of shell dynamics theory. 

Primary attention in this monograph is focused on calculation of dynamic model 
parameters which affect stability and control. Emphasis is placed on modes for which 
the system frequency falls within the bandwidth of the control system, i.e., below 
20 Hz for a large space booster. 

The vibrations of thin ,elastic shells have attracted interest amoung researchers in 
the fields of mechanics and acoustics for almost a century. The foundations of thin 
elastic shell theory were formulated by Lord Rayleigh and H. Lamb(2), and by the 
classical work of A. E. Love(3). The works of S. Timoshenko, while quite brief in the 
aspects of shell theory(4), are understandable and up to date. However, neither of his 
works discusses any problems in shell dynamics. The work of W. Fliigge@) also con- 
tams an excellent collection of shell problems in the aspect of statics. The theoretical 
foundations of shell theories can best be obtained in the work of Goldenveizer(7). His 
tensorial formulation of the shell equations represents the general case; however, the 
applications of shell equations include only static problems. 

The basis of modern dynamics of thin-walled shells can be found primarily in papers 
published during the last 30 years. The purpose of this monograph is to explain the 
essential foundations of thin-walled elastic shells and the basis of theoretical derivations, 
The monograph attempts to fill the gap which presently exists between the contents of 
dynamics textbooks and recently published literature in the field of shell dynamics and 
explain the differences in their treatment of the subject. Examples and problems are 
included to demonstrate the use of the theories. Static problems are discussed in some 
cases to compare them with the equivalent dynamic problems. In addition, the relation- 
ship of shell vibration theory to practical application in the field of missiles and launch 
vehicles is described. 
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S/STATE OF THE ART 

Owing to the intrinsic complications of the problem of shell dynamics, the analytical as 
well as the experimental results accumulated in technical literature are far from ade- 
quate to present a clear picture of the dynamics problem for even a relatively simple 
shell configuration. The main difficulty lies not in the formulation of a set of equations 
describing the vibrations of the shell but, rather, in the simplification and solution of 
these equations. Because the basic assumptions of the equations of thin elastic shells 
always introduces some restriction, all the solutions of thin-shell problems contain 
some restriction. This is a result of the derivations and basic assumptions. In other 
words, the solutions of shell problems are never as complete as the solutions of theo- 
retical elasticity problems. Normally, several simplifying assumptions can be intro- 
duced to simplify very complex shell equations and derive a solution which approximates 
physical reality and can be handled mathematically. 

One of the difficulties encountered in the study of shell theories is the great variety 
of assumptions and simplifications applied by different authors. This variation appears 
most often in the strain-displacement relationships. A careful study of the individual. 
problems, however, will easily convince the reader that in most cases the differences 
are either not important or do not greatly affect the results in the particular problem 
under study. It is necessary to understand the theoretical aspects of the problems so 
that one will understand why the assumptions and simplifications applied to one problem 
cannot be applied to a different problem. The boundary conditions and the strain- 
displacement relations are one example. 

As stated previously, this monograph reviews the differences in treatment of the 
dynamics problem between several textbooks applicable to the field and attempts to 
close the gap between the textbook theories and those contained in recent literature. 
The second part of the monograph reviews some of the important and typical papers 
published in the field of shell vibration. 

2.1 MATHEMATICAL REVIEW OF DIFFERENTIAL GEOMETRY 

Since mathematical representations of shell surfaces are made according to the theory 
of differential geometry, an understanding of some of the basic theories in this branch 
of mathematics is necessary. 

The discussion of differential geometry can be separated into two parts: 1) the theory 
of space curves, and 2) the theory of surfaces. Note: In the present level of discussion, 
the subject of tensor analysis will be excluded. 



2.1.1 THEORY OF SPACE CURVES. The mathematical theory of surfaces cannot be 
understood without some explanation of space curves. We can define the cJrves in 
space as paths of a point in motion. In three-dimensional space a curve can be repre- 
sented by the vector equation (see Figure 2) 

F = G(u) = x(u)i + y(u)3 + z(u)ii (1) 

where ? is the radius vector to the curve and u is an arbitrary parameter. 

Equation 1 can be expressed in another form, 

xi = xi 04 (2) 
where 

i = 1, 2, 3 and ‘xi expresses the components of the radius vector for ‘F. 

2.1.1.1 TangenttoaSpace Curve. Figure 1 illustrates the tangent vector to a space 
curve of point P. 

Figure 1. Tangent Vector to Space Curve 
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We may define the fact that the tangent is the limiting position of a line through P 
and a point Q in the given interval of u, where Q -) P, by saying that the tangent passes 
through two consecutive points on the curve. The equation of tangent T can be expressec 
therefore 

where 
d =- 

du 

2.1.1.2 Arc Length. -- The arc length of a segment of the curve between points A (u,) 
and P (u) can be expressed by the following integral (see Figure 2). 

s(u) =( ds =$($ :)1’2du 

where 

d? I -= r 
du 

dr = Sdu 

and 

Equation 5 can be expressed in the form 

ds = (+ $)1’2 du 

2.1.1.3 Unit Tangent Vector. 
^ ._ In the 

case or the parameters, u is equal to the 
arc length of s, or u = s . The tangent 
vector of the space curve becomes a unit 
vector. 

I I dr 1 
ds= 

if 

i: = 3s) 

(7) 

(4) 

(5) 

Figure 2. Arc Length of a 
Space Curve 



Proof of the theory is given below. If 

u=s 

then 

z= %o 

One can express Equation 6 in the form 

ds2 
2 = f&u = ;;ds 2 

Therefore, 

+; = 1 

d: The vector $ = ds is therefore a unit vector. 

Let u be an independent variable, a general parameter, then 

where : 

(8) 

t is the unit tangent vector and p(u) = 2 is a scalar function. 

2.1.1.4 Osculating Plane. The tangent was defined previously as the line passing 
through two consecutive points of the curve. The osculating plane can be defined as the 
plane through three consecutive points, which means the limiting position of a plane 
passing through three nearby points of the curve, when two of these points approach the 
third (Figure 3). 

The equation of the osculating plane can be expressed (see Figure 4) as 

(11) 

(12) 

where X and p are arbitrary constants. 



z 

- 

Figure 3. Osculating 1’13 the 

Figure 4. Osculating Plane Equation 



2.1.1.5 Curvature and Principal Normal. The line in the osculating plane at point 
P perpendicular to the tangent line is called the principal normal (see Figure 5, points 
PI, P2 and P3). A unit vector, ii, is placed in its direction, the sense of which ,may 
be arbitrarily selected, provided it is continuous along the curve. If it is assumed 
that the arc length is the parameter, ? = F(s), one can write 

t.i= 1 (13) 

where 

Differentiating Equation 13 with respect to s, 

T.T’ = 0 

Therefore 

SPACE CURVE 

OSCULATING 
CIRCLE 

Figure 5. Principal Normal 
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Equation 14 shows that the vectort’ dt = - is perpendicular tot, since ds 

and 
T’ = ; (# + ;;I (15) 

where the symbols are defined as 

I d =- 
ds 

and 
d . =- 

du 

The comparison of Equations 15 and 12 shows that t’ lies in the plane of f and g 
and, hence, in the osculating plane. 

dt The Vector ds - = E, which expresses the rate of change of the tangent, is called the 
curvature vector. The curvature vector can be expressed in terms of the normal unit 
vector. 

(16) 

where 
Iii1 = 1 

The factor X is called curvature. 
fined as R = x-l. 

The radius R of the osculating circle can be de- 
The absolute value of R is the radius of curvature, which is the 

radius of the circle passing through three consecutive points of the curve, the 
osculating circle. 

2.1.1.6 Torsion. The torsion of a curve can be expressed by the rate of change of 
the osculating plane. For this purpose the vector binormal, b, was introduced 
according to the expression 

L = (i x ii) (17) 

Equation 17 shows that the binormal, 6, is perpendicular to the osculating plane. 
It also follows that 

i.t = 0 (18) 

Differentiating Equation 18 with respect to s, 

-1 b .;+i;.t’= 0 (19) 



or 

i;q = -,i;(‘xi) = 0 

Therefore 

and 

i?I.ii 

since 

E.i;=l 

Since the unit vectors t, ii, and b are mutually perpendicular to each other, it fol- 
lows that the rate of change of the bmormal, 6: has to be parallel with vector fi. The 
last statement, in mathematical terms, is 

where the proportionality factor, 7, is called the torsion of the curve. 

The torsion, T, can be expressed in the follokng form 

Equation 21 can be expressed in the final form. 

(20) 

(21) 

(22) 

where 
I d =- 

ds 

2.1.1.7 Formulas of Frenet (Moving Trihedron Along a Curve). The formulas of 
moving trihedron will be completed by the equation of rate change of the normal vector, 
--I n. 

Since 

ii-ii= 1, 

- --I n-n =0 (23) 
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The derivative of the normal vector, fi’, can be expressed linearly in terms of t 
and 1;. 

--I dii n z-z 
ds CY’t + pii (24) 

where (Y and /3 are, so far, undetermined constants. The multiplication of Equation 24 
by vectors ? and b leads to the determination of the unknown coefficients, Q! and /3. 

Ly1 
=t.$= -ii.?’ = -;.wii = -y 

I 
(25) 

cr2 
= i.;‘= -E.i;‘= ii-rii = 7 

Equation 24 becomes, in the final form, 

-, dii n z-s 
ds -ltt+71; 

The formulas of Frenet can be summarized for space curves. 

dt - 
ds= XII 

dii -= 
ds -xi + rb 

db -= 
ds -Tii 

(2 6) 

(27) 

Three planes can be associated by the moving trihedron according to Figure 6. 

2.1.2 THEORY OF SURFACES. A surface can be expressed as the function of two 
independent variables by the following equation. 

F = F(u,v) (2 8) 

where the independent variables are u and v. Let the sphere serve as an example 
(see Figure 7). 

The equations of a spherical surface are: 

X = acoscp cos 8 

Y = acoscpsin 8 

Z = asincp 

11 
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Figure 6. Moving Trihedron 

Figure 7. Spherical Surface 
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The net of parametric curves was constructed on the surface, keeping first one of 
the independent variables constant and then the other one. Figure 8 illustrates the 
concept. 

At point P the vector Fu is tangent to the curve v = constant, and Sv is tangent to the 
curve u = constant. 

u = constant 

=constant 

Figure 8. Net of Parabolic Curves on the Surface 

2.1.2.1 First Fundamental Form of Surface. The relation cp (u, v) = 0 between the 
curvilinear coordinates determines a curve on the surface. Such a curve can also be 
given in parametric form. 

u = u(t) and V = v(t) (2 9) 

dr ’ 
The vector z = ? at a point P of the surface, given by 

d? a’r du aF dv -=m.-+-- 
dt au dt av dt (30) 

is tangent to the curve and therefore to the surface. Equation 30 can also be expressed 
in a form independent of the choice of parameter. 

d? = Z,du + Fvdv (31) 

13 



The distance of two points P and Q on a curve is found by integrating (see Figure 8) 

ds2 = dF l d? = r, . ru du2 + 2 ru:ududv + r;, . &dv2 (32) 

where d? was expressed according to Equation 31. 

The following notations are introduced. 

E = ?, . ?, F = rue rv and G = r, . ?, (33) 

The elements of the curve are expressed by the symbols of Equation 33. 

ds2 
2 2 

= Edu + 2Fdudv + Gdv (34) 
‘-. 

The expression 34 for ds’ is called the first fundamental form of the surface. 

The distance between P and Q on the curve u = u(t) and v = v(t) can now be expressed 
as follows. 

112 
du dv dv 2 dt +2Fdtz+G s ( )I (35) 

2.1.2.2 Surface Element. Figure 9 shows the element of a surface area. 

The element of a surface area may be expressed as 

dA = (r,du X rvdv 1 (36) 

u = constant 
Equation 36 can be expressed as 

follows. 

I v =constant 

dA2 = (r, X Fv)(r, X r,)du2dv2 (37) 

because 

4, x Q) (Su x f,) = (qp,) (F&) 

- (rui;v)2 

= EG-F2 (38) 

Figure 9. Surface Area Element 

14 



The substitution of Equation 38 into Equation 37 yields finally 

dA = (EG-F) 2 1’2dudv (39) 

The integration of Equation 39 leads to the area of a region on a surface. 

A= JY- (E G - F2)1’2 dudv (40) 

2.1.2.3 Normal Vector to the Surface. The surface normal is the line at a point P 
perpendicular to the tangent plane. 

The unit normal based on Figure 10 can be defined as 

N= F, x F,) 
15, x Fvl 

(Fu x F+) = 
(E G - F2)1’2 

since 

IF,xr,l = (EG - F 2 l/2 ) 

(41) 

(42 ) u = constant 

The explanation of Equation 42 can be 
found in Equation 38. 

Figure 10. Normal Vector to Surface 

2.1.2.4 Second Fundamental Form, Euler’s Theory. The second fundamental of a -~~ 
surface expresses the normal curvature of an arbitrary curve on the surface. When 
? is the unit tangent vector of point P on the surface, the curvature vector, i, can be 
expressed as 

(43) 

where the curvature vector, E, w.as 
decomposed into a component, En, 
normal and a component, k, tangen- 
tial to the surface (see Figure 11). 

Figure 11. Components of Curvature Vector 
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The vector Cn is called the normal curvature vector and cni. be expressed in terms 
of the unit surface normal vector, E. 

it, = x,i;j’ (44) 

where x, is the normal curvature. 

The scalar kn depends for its sign on the sense of G. The vector ‘;g is called the 
tangential curvature vector or geodesic curvature vector. The present theory is in- 
tended to explore the calculation of vector En only. Since the surface normal vector, 
N, is perpendicular to any of the tangent vectors, :, one can write 

f.‘t = 0 (45) 

Differentiating Equation 45 with respect to s, 

“.t+f&() 
ds ds 

Equation 46 can be expressed in the following form. 

The multiplication of Equation 43 by vector k leads to 

dl N=i; 
ds’ 

,*N = x, 

(46) 

(47) 

(48) 

since 

and 

ii, = 7CnN 

(For further explanations, see Equation 44. ) 

The comparison of Equations 47 and 48 yields finally 

The following derivations are intended to study the right side of Equation 49. The 
term dF was expressed by Equation 31 as: 
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dj! = :,du + Z,dv 

Similarly 

dN = N,du + ?$dv 

The substitution of Equations 31 and 50 into Equation 49 leads to 

($Eu, du2 + (i$iv + i$,) du dv + (i&) dv2 
x, = - 

(,u l 
r,) du2 + 2 (Zu l Fv) dudv i- (& l F,) dv2 

It can be seen from Equation 41 that vector i is perpendicular to vector iii; 
consequently 

P;E = 0 

Differentiating Equation 52 with respect to u, one has 

e, x TV) 
- (ruNu) = Fuu l E = Fuu l Ir; 

(~uu~u;v) 
x i I = 

u v (E G - F2)‘j2 

Introducing the symbol e for Equation 53, one has 

- -- 
@uururv) 

e = 
(EG - F2)1’2 

Similarly 

Therefore 

- (rvGv) = Fw l Fi = 

(rwrurv) 

(EG - F2)1’2 

Again, introducing the symbol g for Equation 55, 

(r,r,r,) 
g= 

(EG - F2) l/2 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 
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Similarly 

2f = - (& + ZvEu) = 2 Fugi = 2 (ruvrurv) 
(EG - F2)1’2 

or 

f 
cf&& = 

(E G - F2)1’2 

(57) 

(58) 

The substitution of Equations 32 and 33 (and furthermore 54, 56 and 58) into Equa- 
tion 51 leads to the final equation of normal curvature of a surface. 

x, = 
edu2 + 2fdudv + gdv’ 

Edu2 + 2 Fdudv+Gdv2 
W-4 

If the curvilinear coordinate system of the surface is .orthogonal, then vector Fu is 
orthogonal to Fv or Fu . Fv = 0; consequently F = f = 0. The formula of normal 
curvature was reduced in this case to 

edu2 + gdv’ x, = - - = e(g,” +g($) 
Edu2 + Gdv2 

(60) 

The denominator of Equation 60 was expressed according to Equation 34. This for- 
mula can be cast into a simple form. Substituting first dv = 0 and then du = 0 into 
Equation 60, 

dv = 0 

du = 0 

e 
xn = 3 = jy 

g 
‘n = “2 = F 

1 
(61) 

x1 and x2 are the so-called principal curvatures of the normal curvature vector. 
Without the mathematical proof, the definition of principal curvatures is desirable for 
some explanations. The principal curvatures x1 and x2 are the extreme values of 
the normal curvature as functions of the varying tangent directions to the surface given 
by du/dv. It can also be proved that these curvature directions are orthogonal. 

Euler’s Theorem. The normal curvature, x,, can be expressed in an arbitrary 
direction in terms of principal curvatures x1 and x2 in the following. With the aid of 
the terms ‘E, F, G one can express the angle CI! of two tangent directions to the surface 
given by du/dv and 61,&v. Then 
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and 

di = Fudu +:,dv 

6F = Eu6u + z,av 

d? 9 6j! E du6u + Gdvbv 
‘Osa = Id?1 l l6Zl = ds (E6u2 + G6v2)1/2 

Assuming 6v = 0, Equation 63 may be written 

coso1 = E 

Similarly 

6u = 0 

Equation 63 can then be reduced to 

= sina = G 

(62) 

(63) 

w 

(65) 

The substitution of expressions 62, 64 and 65 into Equation 60 leads to the final 
formula. 

xn = nl cos2a + X2sin2cx w 

2.1.3 EXAMPLES. The equation of an oblate spheroidal can be defined by the 
following equations (see Figure 12). 

x = acosj3cos8 

Y = acos/?sin8 
1 

(57) 

Z = a(l-6 2 ) 1’2sin 8 

where the eccentricity is 
b2 l/2 

cc I-- 
( 1 a2 

w3) 

2.1.3.1 Calculation of the Surface Area of the Oblate Spheroid. The vectorial 
equation of surface is in the present case 

7 = xl + yj + zi; = a 2 l/2 cosfism8i+ (1 -c ) sin ok 
I 

(6% 
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Figure 12. Angle of Normal Unit Vector 

The values of expressions E, F, and G have to be calculated according to Equation 
33 since 

r 
B=a- [ 

sinj?cos82 - sinBsin8j + (1 - F 2 l/2 ) cost ii 1 Fe = a - cosfisin8i + cos fi cos ei 

[ 1 E =F B .r B = a2(1-r2c0s2/I) 

F = ?s*Ze = 0 

G = Fe * Fe = a2 cos2@ 

Therefore 

2 l/2 
@G-F) = a2cosj3(1 - c2C0s P) 2 l/2 

(70) 
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The surface area of the ablate. spheroid is, according to Equation 40 and the utiliza- 
tion of Equation 70, 

2s n/2 
A= 

/J 
(EG - F2)1’2ded/!? 

0 -n/2 

2n lr/2 

ff 
l/2 = a2cos@(1 - E2 cos2B) dede 

0 -n/2 

The computation of integral 71 leads finally to 

rb2 (1 + F) A = 2na2+Ta”(l-F) 

(71) 

(72) 

where the value of eccentricity is given by Equation 68. 

2.1.3.2 Normal Unit Vector. Equations 41 and 42 represent the general formulas 
for the present problem since 

(Fe x 7 B ) = -ac0s@sin8 acosp cos 8 0 

-asinj3c0s8 -asin/3sine a(l-c ) 2 1’2cosj3 

Therefore 

-1’2 ii = (l- F2COS28) 1 (1 - F 2 l/2 ) cosj3 c0sei + (1 - E 
2 m 

) cosp heJ 
L 

+ sin /3k 1 (73) 

2.1.3.3 Calculation of the Angle of Normal Unit Vector and the Z Axis. _-~---___ (See 
Figure 12. ) The cosine of the angle can be calculated based on Figure 12 and Equation 
73, as follows. 

I‘N,I 
cos cp 

=-ET= 
sinp 

(1 - E2 cos2 /3) l/2 (74) 
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2.1.3.4 Calculation of the Expressions of e, f, g. Since 

- acosfi co6 8 - acosB sine - a (1 - c2) l/2 sin/3 

(“8si@) = - asinbcos8 - asinp sine a(l-c) 2 1’2cosp 

- acos/3sin8 acosfi cos8 0 

to carry out the computation, one has 

6 pBFpFe) = a3cosB (1 - r2)1’2 

Equation 54 represents the formula 

2 m 
e a(l-c) 

(EG - F2)1’2 (1 - G2 cos2 /3) m 

Similarly 

One has, according to Equation 5 8, 

f = 
(-E G _ $)1’2 = 

0 

Again, one has, from Equation 56 

6 
g = 

ee’p’e) 2 l/2 
= W-E 1 cos p 

(E G - F2)1’2 (1 - c2 cos2B) m 

2.1.3.5 Calculation of the Principal Curvatures and the Principal Radii of the 
Surface. Equation 61 presents the required formula. 

e 2 l/2 

M1=z= 
(1 - .c ) 

a (1 
2 3/2 - c2 cos 8) 

=g= 
‘2 G 

(1 - E2)1’2 

a (1 - ~2cos2~) m 

(75) 

(76) 

(77) 

(78) 

where the expressions E , G, e, and g were calculated previously. 
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The two principal radii of the surface are 

1 a (1 - c2.0s2B) 3/2 
Rl =- = 

xl (1 - c2)1’2 

R2 =L= a(1 - c2cos 2 l/2 /3) 

X2 (1 - E2)1’2 

(79) 
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2.2 THEORY OF THIN ELASTIC SHELLS 

2.2.1 THEORY OF MEMBRANE SHELLS. The membrane theory is an approximate 
method of analysis of thin elastic shells based upon the assumption that the transverse 
shear forces (bending and twisting moments) can be neglected as small quantities com- 
pared with the membrane forces acting on the shell. The theory can be a useful tool 
in cases when these theoretical assumptions approach physical reality. 

The real advantage of membrane theory is the mathematical simplification; however, 
the simplification has only limited physical applications, as will be shown by the dis- 
cussion of the boundary conditions. The present theory assumed the validity of Hooke’s 
law (linear stress-strain relations) and that the shell thickness is relatively quite 
small compared with the general geometry of the shell. 

To analyze the internal forces of the shell, an infinitely small element is cut out 
from the shell by two pairs of adjacent planes which are normal to the middle surface 
of the shell and which contain its principal curvatures (Figure 13). 

The coordinate axes x and y are tangent at 0 to the lines of principal curvature and 
the axis z is normal to the middle surface. The principal radii of curvature which lie 
in the xz and yz planes are denoted by rx and ry . 

The stresses acting on the plane faces of the element are resolved in the directions 
of the coordinate axes, and the stress components are denoted by the symbols ox, uy 
and rxy. The resultant membrane forces per unit length of the normal sections are 
shown in Figure 14. 

23 

L 



Figure 13. Shell Element 

X 

Y 

Z 

Figure 14. Resultant Membrane Forces 
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The forces per unit length of the normal sections can be expressed in the following 
form. 

N, = 

NY = 

Similarly, one 

and 

h/2 <ry - z) 

f uX 
-h/2 rY 

dz = drox(l - ;)dz 

has 

Nxy = $xy (’ - $dz 

Nyx = d;Tyx (1 - f-)dz 

(81) 

(82) 

(83) 

(84) 

The small quantities z/r-x and z/ry appear in Equations 81 through 84 because the 
lateral sides of the element shown in Figure 13 have a trapezoidal form due to the 
curvature of the shell. 

Since the membrane theory assumed that the thickness h is very small in compari- 
son with the radii rx, ry the terms z/rx and z/ry are omitted in Equations 81 through 84. 

NX = u,h, Ny = uyh and N,y = Nyx = rxyh (85) 

since 

7 
XY = ?yx (86) 

Equation 85 represents one of the fundamental assumptions of membrane theory: 

“The forces N,, NY and Nxy obtained in this manner are sometimes 
called membrane forces, and the theory of shells based on the omis- 
sion of bending stresses is called membrane theory. ” (See Reference 
4, Page 433.) 
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The strains can be expressed based on the theoretical elasticity. 

and 037) 

where 

E = modulus of elasticity 

V = Poisson’s ratio 

The stress ox may be assumed to be much smaller than stresses ox and uy in Equa- 
tion 87, and its influence in Hooke’s law may be neglected (uz = 0). 

Equation 87 in this case may be written 

l&J cx = E x - VUy) 

EY 1 (0 = z y-vux) 

The solution of Equation 88 in terms of stresses leads to 

E 
OY = (1 - V2) 

vy + v cx) 

(8% 

Equation 89 shows that the membrane stresses are reduced to a plane stress problem. 

The equilibrium equations of some of the most important shell configurations will 
be discussed in the following subsections. 

2.2.1.1 Membrane Theory of Cylindrical Shells. The differential equations of equi- 
librium will be derived for a cylindrical shell element. Figure 15a illustrates the gen- 
era1 arrangement and Figure 15b shows the shell element and the membrane forces 
acting on the sides of the element. In addition, a load will be distributed over the 
surface of the element, the components of the intensity of this load being denoted by 
X, Yand Z. 
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3N 
+ x0 dx 
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> 

a. b. 

Figure 15. Membrane Forces Acting on Sides of Shell Element 

Considering the equilibrium of the element and summing up the forces in the x- 
direction, one has 

aNX 
xawdx + 

aN,X 

acp *dx +Xawdx = O (90) 

Similarly, the forces in the direction of the tangent to the normal cross section (in 
other words in the y-direction) expressed as the equation of equilibrium, are 

aNv aN, -a@dx+- 
ax w mdx+YadfPdx = O 

(91) 

The forces acting in the direction of the normal to the shell (in other words in the 
z-direction), are 

NPdcpdx+Za@dx = 0 (92) 
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The differential equations of equilibrium can be written, after simplification, as 
follows. 

aNX laNxIp - -x -++-- - 
ax a acp 

aNX, 
ax 

+22! = -y 
a acp 

P-9 

(94) 

NV = -Za (95) 

2.2.1.2 Shells of Revolution with Axially Symmetric Loads. A surface of revolution 
is generated by the rotation of a plane curve about an axis in its plane. Figure 16 
shows an element of a shell cut out by two adjacent meridians and two parallel 

Figure 16. Element of Surface 
of Revolution 

circles. The position of a point on the shell 
is measured in the meridional direction by 
the angle 19, and in the so-called parallel 
direction by the angle cp. The angle cp is 
the angle between the normal surface vec- 
tor and the coordinate z-axis. The merid- 
ional plane and the plane perpendicular to 
the meridian are the planes of principal 
curvature at any point on a surface of rev- 
olution, and the corresponding radii of 
curvature are designated by r1 and r2. 
The radius of the parallel circle is denoted 
by r. and it can be expressed, based on 
Figure 16, as 

r 
0 

= r2sincp (96) 

From the assumed symmetry of loading 
and deformation, it can be concluded that 
all the-forces and deformations are inde- 
pendent of angle 0, and that there will be 
no shearing forces acting on the side of the 
element. The membrane forces per unit 
length are designated by Nq and No. The 
components of the external force per unit 
area of shell surface are designated by X, 

Y and Z; however, the assumption of symmetry requires that load X = 0. Again, the 
differential equations of equilibrium of the shell element will be derived. 
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The membrane force on the parallel curve bc is 

NgOde 

The force on curve AB is (see Figure 16) 

Ncp + 
aN, acp dq (r. + dr,) de = 

(97) 

(98) 

The membrane force on meridional curve s is 

Nerl* (99) 

Figure 17 shows the components of membrane forces N6 in a meridional plane. 

\-- -1 

-1 id ,/’ 

/ 

I / I \ I 
./- / \ I 

ro I 

/ 
N-r, du, de smut 

Figure 17. Membrane Force Components on a Surface of Revolution 

It can be seen from Figure 17 that force NS has a component in the direction of the 
tangent meridians (y-direction). 

- No rl @de cos up (100) 
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The component of external force in the same direction is 

Yrlro@dO (101) 

Summing up forces in the direction tangent to the meridian (in direction y), accord- 
ing to Equations 98, 97, 100, and 101, the equation of equilibrium is 

aN, 
NV + acp -dq 

- Nqrod9 - N(jrl@decoscp 

+ Yrod9 rld’p = 0 (102) 

Neglecting a small quantity of second order, Equation 102 becomes 

3 arO 

w 
r,d%‘de +Nq acp -dqd0 - Nerl cos qdqde +Yrorl@de = 0 (103) 

since 

aNv - rod9 de + Nq acp 
acp 

%d,pde = $(NPro)dqd9 (104) 

Substitution of Equation 104 into Equation 103 and division of Equation 103 by 
@ de yields the equation of equilibrium of forces in a direction tangent to the meridian. 

$(roNP) - NerlCOS Cp = -Y rorl (105) 

The second equation of equilibrium is obtained by summing the projections of the 
forces in the direction normal to the shell surface (in the z-direction). Figure 18 
shows the forces acting on the upper and lower sides of the element. The resultant 
force, based on Figure 18, is 

Nqrod6 dq (106) 

The component of the lateral force, No, acting in the z-direction is, according to 
Figure 17, 

N9rldq df3 sin cp (107) 

The external load acting on the shell element also has a component in this direction. 

zrlrod@ W (108) 
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2N 
cp 

Figure 18. Forces Acting on Elements 

Summing up the forces from Equations 106, 107 and 108, the following equation can 
be obtained. 

NQ@rodf3 + N6rldqd6sincP + Zrod9rld(p = 0 (109) 

The substitution of Equation 96 into Equation 106 and division of Equation 106 by 
de dq yields the equilibrium equation in the z-direction. 

3, Ne -z -= 
rl r2 

(110) 

The two equilibrium equations are the functions of the independent variable ~0 . 
These equations can also be expressed as the independent variable of the meridian 
length s, or as the independent variable of the z-coordinate. Figure 19 shows the 
meridional curve of the shell. The line element ds of the meridian can be written 

ds = rlW (111) 
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Figure 19. Meridional Curve 

% Ne --+-z-z 
rl r2 

Equation 113 may be expressed as 

a a 
acp = 5 sincPaz 

The line element dz of the z-coordinate 
is expressed as 

dz = ds sin cp (112) 

Equations 111 and 112 lead also to the 
following relation. 

dz = rlsincpdp (113) 

Equation 111 can be expressed as 

a a 
acp = ‘1% (114) 

The substitution of Equation 114 into 
Equations 105 and 110 and the replacement 
of the subindex cp by s gives another type of 
equation of equilibrium for shells of 
revolution. 

$ (roNs) - NecoscP = -Y r. (115) 

Substituting differential operator 117 into Equations 105 and 110 and replacing 
subindex cp by z, one has 

2 (r, Nz) - Necosq = -Yr2 

N Ne --z+- = -z 
rl r2 
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2.2.1.3 Equilibrium Equation of a Symmetrically Loaded Conical Shell. -- ~- ~ ~~ ~~ 
shows the coordinate system which is suitable for a conical shell. 

Figure 20 

Figure 20. Conical Shell Coordinate Sys tern 

It can be concluded from Figure 20 that 

71 \ 
(b = TQ! 

r 
0 

= ssino! 
, (120) 

r2 = s tan o 

rl = m 
I 

It is assumed that the conical shell is loaded symmetrically by the external forces; 
therefore, Equations 115 and 116 are applicable in the present case. Substituting 
Equation 120 into Equations 115 and 116 yields 

$ (s sin Q Ns) - Ne cos(; - a) = - Ys since (121) 
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N 
A+ Ne = -z 0) stanar (122) 

The equilibrium equations of the conical shell, in the final form, are 

$s(~Ns) - Ne = -sY (123) 

Ne = -zsta.na! (124) 

2.2.1.4 Equilibrium Equation of a Symmetrically Loaded Cylindrical Shell. The 
general case of external loading was derived by Equations 93, 94 and 95. % the case 
of a symmetrical load, the following assumptions can be made. 

N* = NW = y = 0 (125) 

Equations 93 through 95 can be reduced by the previous assumptions to 

a NX 
- z-x 

ax (126) 

NV = -Za (127) 

where force NP is independent of angle cp. 

These equations can also be derived from Equations 118 and 119 with the following 
assumptions. 

1 
r. = r2 = a 

rl =a 1 

(128) 

Equations 118 and 119 become 

$ (N,) = - Y (12% 

and 

N e= - Za (136) 

Equations 126 and 127 differ only in symbology when compared with Equations 129 and 
130. 
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2.2.1.5 Strain-Displacement Equations of Membrane Shells. In the following dis- 
cussions the secondary strains were neglected. (For further explanation, see Figure 
13 and Equations 81 through 84.) 

Strain-Displacement Relations of a Cylinder. Figure 21 illustrates the general 
arrangement, the directions of the coordinate system, and two arbitrary points, A and 
B, on the surface of the shell. The displacements of the shell are in the longitudinal 
direction, u; circumferential direction, v; and normal direction, w (+w toward the 
center of the cylinder). 

Figure 21. General Arrangement 

Figure 22 shows the deformations of 
points A and B in the longitudinal direction. 
Unprimed letters represent the undeformed 
state, and the primed letters express the 
deformed state . 

The strain is in the longitudinal 
direction. 

= (u +&dx) - u 

dx 

au =- 
ax (131) Figure 22. Points A and B Deformation 
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Figure 23 demonstrates the shell deformations in the circumferential direction. 

Figure 23. Circumferential Deformations of Cylindrical Shell 

The undeformed points, A and B, have deformations not only in the circumferential 
direction, A’ and B ‘, but the cylinder and consequently points A’ and B’ also move in 
the radial direction. The final positions of the points A and B are A” and B”, since 

A%’ = TB + BB’ - ii’= a* + (v +$@) - v 

or 

A~B’= adq +$;d(~ 

Similarly, one has 

ATB” = A-‘(y) = ( adq +gdq)(l -z) 

The circumferential strain can be expressed on the basis of the previous 
derivations. 

Finally, one has 

lav w 

%=aacP-a 

(132) 

(133) 

(134) 
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The shear-strain is the sum of the rotations of the two line elements dx and a@ 
(see Figure 24). 

Figure 24. Shear Strain 

Edx %dso av 
Y 

acp 1 au =-+- =--+-- 
x, 4J dx adv ax a acp 

dx 

(135) 

The derived strain-displacement relations are in correspondence with the load functions 
assumed in Section 2.2.1.1. 

Strain-Displacement Relations of Shells of Revolution. The external load is assumed 
to be distributed symmetrically on the shell; therefore, the deformations also have 
symmetry 

Figure 25 shows again two points, A and B, on the shell in the meridional plane of 
the surface. The unprimed letters again correspond to the undeformed state, and the 
primed letters designate the deformed state. The displacement of the shell in the tan- 
gential direction is v, and the displacement in the normal direction of the surface is w. 
The deformation of the shell can again be resolved in the tangential and normal 
directions. 

The points A and B moved due to the tangential deformation to the positions of A’ 
and B’. 
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Figure 25. Strain-Displacement Relations of Surface of Revolution 

Therefore 

A% ’ = rld(p +%dq 
acp (137) 

Due to the normal deformation of the shell, the point A ’ and B ’ moved to the final 
positions A” and B”. The following relations can be written, based on Figure 25. 

A7B// = A7B, (2-2) = ( rlW +$dq)(l-c) (138) 

The tangential strain can be expressed 

A7B” - i% ccp = 
rIdrp+-$dp)(l -g) - rldq 

= 
fi rl d(P (139) 

Ignoring the second-order quantity, acp av dQ c , the tangential strain is expressed. 

ccp = $$ - w) (146) 

The circumferential deformation of the shell can be seen in Figure 26. The 
deformation and the corresponding strain are now in the parallel plane of the shell. 
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rO 
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d. 

1 
cp I 

\ 
\ V 

\ I 

1; 

-w sincp + vcoscp 91 

I 

I 

v coscp - w sincp 

” ‘VCOScp -w sincp 

Figure 26. Circumferential Deformat,ion of Surface of Revolution 

The undeformed state is expressed by points A and C and the deformed state by A ’ 
and C’. 

The circumferential strain is 

A-%’ - A-C ce = = (&i + fi’)dS - oAd6 
A: oAd6 

because 

(r. + vcos cp- wsin cp)de - rod6 
Fe = __ 

rod9 (141) 

By substitution of Equation 96 into Equation 141, the circumferential strain, is in 
the final form, 

ce = -5 (v cot q - w) 
‘2 

(142) 

Strain-Displacement Relations of Conic*,al Shells. It is assumed that the external load ~- --____-----___ _-..- - -__ 
is symmetric; therefore, the deformations of the conical shell are also symmetric. 
The strains can be derived in this case as the degenerate case of the shells of revolu- 
tion. Differential operator 114 ~3s substituted into Equation 140. 
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The conical shell can be specified by the following data. 

Substituting Equation 120 into Equations 143 and 142, one has 

ce = L.--(vtancY-w) = ;- fcota 

(143) 

(144) 

(145) 

In the case of a small cone angle, CY, the following assumption may be made. 

w cot CY * v (146) 

Equation 145 was reduced in this case. 

w cot o! 
W-- s (147) 

Figure 27 shows the customary nota- 
tion of the conical shell; therefore, the 
longitudinal strain is expressed by 
Equation 144. 

au 
cs = J-- 

S 
(148) 

The circumferential strain is unchanged. 

w cot CY 
w=- s (14% 

2.2.1.6 Static Problems. The follow- 
ing static problems serve a comparison 
purpose with the equivalent dynamic 
problems. It can be seen in the follow- 
ing discussion that the order of differen- 
tial equations is not the same in the 
case of statics as it is in dynamics. 
As a consequence, the order of 

Figure 27. Conical Shell Notation 
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displacement functions and the arbitrary constants are not necessarily the same in the 
two different cases. 

Stresses and Displacements of a Sphere by 
a Uniform Load. Figure 28 shows a half 
sphere loaded by a uniform pressure, p. 

a. Calculation of the Stresses of the Shell. 
The load function is 

Y=O and z=p (150) 

One has, from the geometry of the 
sphere, 

r1 = r2 = a 

and (151) 
r 

0 
= asincp Figure 28. Loaded Half Sphere 

Equations 105 and 110 become, in the case of the spherical shell, 

a sin Cp Nq) - No a cos cp = 0 

No Ne --+--c-p 
a a 

The substitution of Equation 153 into Equation 152 yields 

$(sin cp N$ + N 
cp COSv =-Pacosq 

Let the new independent variable 

x = cos cp and 
d 

= -(l - x2) l/2 d 
z dx 

Equation 154 becomes, by substitution of Expression 155, 

NV 1 +xNV= -pax 

= - pax 

(152) 

(153) 

(154) 

(155) 

(156) 
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The result after integration of Equation 156 is 

N - pax2 + C 
cp - 2(1 - x2) (1 - x2) 

(157) 

where C is an arbitrary constant. 

The constant, C, can be evaluated from the condition of the support. Based on 
Figure 29, the following equation can be written 

pa2n = -2naNq 
x=0 

The solution of Equation 158 is 

c = -y 

Equation 157 is, by the use of 
Expression 159 

(158) 

(159) 

(166) Figure 29. Forces on a Half Spherical Shell 

The following relation can be obtained from Equation 153. 

Ne = -pa-Nq= -pa+?= -y 

The stresses of the shell can be written 

(161) 

(162) 

where h is the thickness of the shell. 

b. Calculation of the Displacements of the Shell. Based on Equation 162, the follow- 
ing equations can be written 

N cp = Ne 

Therefore 

(163) 
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Equation 163 can be expressed by the displacements (see Equations 140 and 142) 

av 

(164) 

After integration, one has 

2 l/2 v = C(l-x) (165) 

The arbitrary constant C can again be evaluated from the boundary condition 
at the support, which is 

v(0) = 0 

Therefore 

c = 0 

The tangential displacement is 

v=o (167) 

Similarly 

Nq = Eh 
(Gp + V co) 

Eh 

(1 - V2) = (l-) ce 

(166) 

(168) 

Substituting the values of Expressions 160 and 167, the following equation can be 
obtained. 

pa Ehw -- = - 
2 a (1 - V) (16% 

Expressing w from the last equation, 
one has 

w = Pa2(l-v) 
2Eh (170) 

ED 
PE 

Figure 30 shows the deformation of 
the shell. Figure 30. Shell Deformation 
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Membrane Cylinder Loaded with a Uniform Force Parallel with the Axis. A membrane 
cylinder is loaded with a uniform force parallel with the axis as shown in Figure 31. 

a. Calculation of the Membrane Forces. 
The force per unit length on the 
periphery of the cylinder is 

F PO = - 
2Va (171) 

Because of symmetry, one has 

N aN(P =- = 0 
xq acp (172) 

The load functions are the following 

x=y=z=o (173) 

Equations 93, 94, and 95 can be 
expressed as Figure 31. Axially Loaded Membrane Cylinder 

aNX 
-= 
ax 0 (174) 

NV = 0 (175) 

The integration of Equation 174 leads to 

N, = Constant = C (176) 

The boundary conditions are, in this case 

NX = N, 
I 

= N, = - PO (177) 
x=0 x=a 

Therefore 

c = -PO 

b. Calculation of the Displacements. Equation 175 can be obtained as 

N - 
Eh 

q - (1 - V2) 
(’ (p + VEX) = 0 
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/ 
I 

Therefore 

c cp= - vex (178) 

The membrane force, N,, can be expressed, based on Equations 178 and 131 as 

N, = Eh 
(1 - V2) 

(c ,+vcd = EhFx = -p. 

since 

Integrating Equation 179, one has 

POX 
u(x) = - - 

Eh 

The circumferential strain was expressed, according to Equation 134 

(180) 

(181) 

Because of symmetry 

av 
acp=O 

The use of Relations 178 and 179 leads to 

ccp=-;= vpO 
-vex = - 

Eh (182) 
\--d 

The radial displacement, w, can be 
expressed from Equation 182 as 

vaP, 
w = -- 

Eh (183) 

DEFORMED 

Figure 32 shows the deformation of 
the shell. It is obvious that the 
boundary conditions in this case are a 
function of the loading condition. 

Figure 32. Cylindrical Shell Deformation 
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Stresses and Deformations of a Pressurized Cylindrical Membrane Shell. Figure 33 
shows the cylindrical membrane shell which is pressurized and covered by a rigid 
plate. Since the technique of solution is the same as in the previous problem, the 
calculation and explanation will, in this case, be rather brief. 

Figure 33. Pressurized Cylindrical Shell 

Integrating Equations 186 and 187, one has 

a. Membrane Forces. Because of 
symmetry 

Ne = Nqx = 0 

The loading functions are 

X=Y=O z = -p 

The differential equations are 

aNX -co 
ax 

a% 

NX = Constant = Cl 

N(P = Constant = pa 

The force is in the axial direction 

F = pa217 

The axial force, PO, on the shell is 

F PO = - pa27 pa 
2ar =-=-=C1 2a?7 2 

Therefore 

NQ = pa 

(184) 

(185) 

(186) 

(187) 

(188) 

(189) 
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- 

------- 
pa -= 
2 

$-------:-I 

7 
i (191) : I-i- 

pa = 
)J 

, 
The solution of Equation 191 leads to 
the desired displacement functions. 

b. Displacements. The membrane force and displacement relations, from the 
previous calculations, are 

u(x) = 

2 
w =-pa 

Eh 

1 DEFORMED 
Y SHAPE 

> UNDEFORMED 
SHAPE . 

Figure 34 illustrates the 
deformations. Figure 34. Pressurized Cylindrical 

Shell Deformations 

Practical Applications of Paragraph 2.2.1.6 in the Theory of Missiles. The import- 
ance of longitudinal oscillation is well known in the control theory of missiles. The 
derivation of the spring-mass longitudinal model is based on the problems discussed 
in Paragraph 2.2.1.6. 

47 





3/bYNAMICS OF MEMBRANE SHELLS 

3.1 FREE VIBRATION OF A THIN SPHERICAL SHELL 

It is assumed that the shell is vibrating axisymmetrically. The equilibrium equations 
of a shell element can be used (see previous derivations). 

$ @,I$) - N3ri cos cp =-Y rorl 

Nql Ne -+-c-z 
‘1 r2 

Again, 

and 

rO = asincp 

(110) 

(See Figure 35. ) Figure 35. Coordinate System of Thin 
Spherical Shell 

The external forces can be written in terms of the inertial forces of the shell. 

a2v 
y = -ph at2 

z = a2, -oh- 
at2 

where 

(194) 

v = tangential displacement of the shell 

w = normal displacement of the shell 

p = mass density of the shell 

h = thickness of the shell 
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The forces on the shell are, according to Equations 140 and 142 

+ vr,, = Eh 
(1 - v2)a 

?I + vvcotcp- (l+v)w 
acp 1 

No = Eh (Ee+VCq) = Eh av 

(1 - V2) (1 - V2)a ‘a2 + vcotcp - (l+v)w 1 
(195) 

(196) 

where 

E = modulus of elasticity 

V = Poisson’s ratio 

Equations 105 and 110 can, in the case of a spherical shell, be expressed 

aNv 
sin Cp acp - + (NV- N6)coscp = -Y asincp (197) 

N@+ No = -aZ (198) 

The substitutions of Equations 194, 195 and 196 into Equations 197 and 198 lead to 

a% av 
w2 + cot cp acp - (l+v)$- (v+cot2(p)v = A$ 

av a2w acp + vcotcp- 2w = Bs 

where 

A = Pa2(1 -v2) 
E 

(199) 

(200) 

(201) 

The partial differential equations (199 and 200) are the mathematical representation 
of a thin vibrating spherical shell. The unknown frequencies and mode shapes of the 
vibrating spherical shell may be obtained by the solutions of these equations. The 
first attempt is to reduce these equations to ordinary differential equations. Let us 
assume separation of variables and let 

‘n (Q, t) = Vn ((P) ’ T,/t) 
I 

Wn(fP, t) = Wn((P) ’ Tn/t) I 
(202) 
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where 

T, = harmonic time function 

vn = tangential mode shapes 

wn = normal mode shapes 

Assuming harmonic motion, one has 

d2 T, 

dt2 
+ p,2Tn = 0 

where 

Pn = angular frequency (rad/sec) 

The substitution of Equations 202 and 203 into Equations 199 and 200 leads to 

d2 v, dvn dwn -- 
dv2 

+ cot q -&- - (1 + V) do (v + cot’ (p) v, = -Ap,2Yn 

dvn - + vn cotcP - 2w, = -Bp,2wn 
w 

w, can be expressed from Equation 205 as 

dvn 
- + vn cot cp 
w w, = 

(2 - BP:) 

For mathematical convenience, the independent variable, Cp, was replaced by 
x = cos q. Therefore 

x = coscp 1 

d 
G= 

- 4z-L 
dx 

d2 --$ = (1 - x2) $ - x $ 

(203) 

(204) 

(205) 

(206) 

(207) 
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The use of differential operators 207 in Equations 204 and 206 yields 

d2vn 
(1 - x2) - dvn 

dx2 
- 2x-& -I- (l+u) l-x 4-2 

-[ 

V 

(1 - x2) 
+ (1 - v)x2 _ 

(1 - x2) 
*p2 n 1 v, = 0 

- G-2 2 + ~1 _xx2 v n 
wn = 

(2 - BP;) 

(208) 

(209) 

By substituting Equation 209 into Equation 208, the problem of the vibrating spherical 
shell was reduced to a single differential equation. 

d2vn dv, 
(1 - x2) - 

dx2 
-2x= + 

(~-BP,~)(AP;+W 1 
(l-U-BP;) 

-- 
1-x2 vn = ’ 1 (210) 

Equation 210 represents the vibration of a thin spherical shell. Let 

(2 - BP,~)@P,~ + 1 - V) 
A, = 

(1 - V - Bp,2) 
(211) 

where X, represents the frequency equation. Introducing A, in Equation 210 yields 

(1 
d2vn 

- x2) - 
dx2 

- 2x dvn 1 
-+ 
dx 

x -- n 1 - x2 ) 
v, = 0 (212) 

The solution of Equation 212 proceeds as follows. This second-order differential 
equation is an ordinary differential equation with variable coefficients. It is a 
Legendre type of differential equation and can be satisfied by the Legendre functions. 
The Legendre type of differential equation is, in general 

d2Yn 
(1 - x2) - - dyn 

dx2 
2x-d-x- + n(n+l) - m2 1 y =(j 

(1 - x2) n 
(213) 
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The general solution of this equation is the Legendre function. 

Y,(X) = p,mw (214) 

where n and m are some rational numbers. (They do not have to be integers. ) In 
this general case the Legendre functions can be represented by an infinite series. 
(For further information, see References 8, 9 and 10.) 

3.2 SOLUTION OF EQUATION 212, THE MATHEMATICAL FORMULATION OF A 
VIBRATING MEMBRANE SPHERE 

To avoid any misunderstanding, differential Equation 212 represents the motion of a 
small shell element. This equation is the same regardless of what kind of boundary 
conditions one may try to apply. As will be shown in the following discussion, the 
applicable boundary conditions are also limited because of the use of membrane theory. 
The frequency equation expressed by Equation 211 has to be solved simultaneously 
with Equation 212. In other words, the frequency equation is a function of boundary 
conditions or the definition of bounded solutions of the displacements. Comparison of 
Equation 212 with Equation 213 leads to the solution of the tangential displacements, 
vn, and the angular frequencies, pn, in the following form. 

(215) 

A, = 
(2 - Bp$(Ap,2 + 1 - U) 

(1 - v - BP;) 
= n(n+l) (216) 

where n can still be any rational number. We proceed further to determine the proper 
values of n in the following discussion. 

3.3 COMPLETE SPHERE 

For a complete sphere there is no real physical boundary condition applicable. The 
only mathematical boundary condition one can apply is that the displacement functions 
have to be single-valued and bounded all over the surface of the shell. 

If n is not an integer, but a positive real number, then Pi(x) is unbounded at x = -1; 
therefore 

P,’ (-1) = fm 

Since the solution has to be bounded everywhere, one has to restrict the values of n 
to integer values. 
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In the case of n = 1,2,3 . . . P,’ (-1) is bounded; therefore, Pi(x) is the solution of 
differential equation 212 and the frequency equation 211. 

The frequency equation is 

(2 - Bp;)(Ap,2 + 1 - U) 

(1 -v- Bp,2) 
= n(n + 1) (217) 

where n = 1,2,3,4 

Equation 217 can be solved in the form 

ABPZ + /[l-V-n(n+l)]B-2A/pf+(l-v)[n(n+l)-2] = 0 (218) 

The solution of Equation 218 leads to two sets of frequencies for each value of n. One 
of the sets is bounded and the frequency is pi; the other frequency set is unbounded and 
the frequency is pk (see Figure 36). 

RADIAL 
FREQUENCY 

\ 

RIGID BODY 
FREQUENCY 

\ 

n 
o- 1 2 3 4 5 6 7 

Figure 36. Frequency Curves for the Bounded and Unbounded Set 
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The bounded frequency set approaches an upper limit and it can be shown as 

limp,” = J 
(1 - V) - B (21% 

3.3.1 TANGENTIAL MODE SHAPE. As was proved previously, the tangential mode 
shape, v,(x), can be expressed as 

vn(x) = p,l(x) (220) 

where 

n = 1,2,3. . . 

The structure of Pi(x) is 

P,l(x) = Jl- x2 {polynomial1 (221) 

3.3.2 NORMAL MODE SHAPE w,. The substitution of Equation 220 into Equation 
209 leads to 

- l-x J-Tg+ 

wn(x) = -~- ~-~ 
(2 - BP;) 

From the theory of Legendre functions, one has 

P&x) = K-7 g P,(x) 

(222) 

(223) 

Substituting Equation 223 into Equation 222, the following equation can be obtained. 

- (1 - x2) d2 1;;) + zx!zg 

w,(x) = (224) 
(2 - BP:) 

Again, from the theory of Legendre functions, one has 

d2 P,(x) 
(1 - x2) dx2 

d Pn 6) 
- 2x- 

dx 
+ n (n + 1) Pn(x) = 0 (225) 
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This is the equation of zero-order Legendre functions (m = 0, see Equation 213). One 
has, from Equation 225 

- (1 - x2) 
d2 Pntx) d pn(X) 

dx2 
+ 2x- 

dx 
= n(n + 1) P,(x) 

The substitution of Equation 226 into Equation 224 leads finally to 

(226) 

wntx) = 
ntn + 1) Pn(X) 

(2 - BP;) 
(227) 

where 

n = 1,2,3 . . . 

3.3.3 ORTHOGONALITY CONDITIONS OF SHELL MODES lN THE CASE OF 
COMPLETE SPHERICAL SHELL. The conditions of orthogonal@ can be expressed 
in this special case. 

1 

f 
V.V. 

1 I 
= 0 if 

-1 

where 
i, j = 1,2,3 . . . 

Similarly 

1 

f wiwj = 
0 if 

-1 

where 

i, j = 1,2,3,4 . . . 

ifj (228) 

i#j (229) 

The condition of orthogonal@ always has to be proved, using shell theory; however, 
this statement is also true for other types of continuous mechanics. 
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3.4 LEGENDRF’S DIFFERENTIAL EQUATION AND THE PROPERTIES OF 
LEGENDRE ‘S FUNCTIONS 

As stated previously, the Legendre type of differential equation is in general 

d2Yn 
(1 - x2) - - dyn 

&2 2xdx+ 
m2 ~ 1 1 - x2 yn 

= 0 (see 213) 

The general solution of this equation is the Legendre functions 

Y,(X) = pc(x) (see 214) 

where n and m are some rational numbers. In the case of integer values of m, the 
Legendre functions can be expressed as 

P?(x) = (1 - x2) 
m/2 drn 

- pntx) 
dxm 

where P,(x) is the order of zero and degree of n (m = 0). 

From the theory of hypergeometric functions, one has 

F(o, 8, Y, z) = 1 + gz + ‘2 (a! + 1)&B + 1) z2 
1.2.y (Y + 1) 

+ a(0 + 1,p + 2) B(B + l)@ + 2) ,3 + 
1.2.3~(~ + l)(y + 2) 

. . . 

P,(x) can be expressed by the hypergeometric function as 

l-x 
n + 1, 1, ---2- 

Equation 232 can be written, based on Equation 231, as 

P,(x) = 
[ 

1 - n@l+21’ (1 - x) - W - n)@ + l)(n + 2) t1 _ xJ2 

1.2.1.2.22 

n(1 - n)(2 - n)(n + 1) tn + Wn + 3) t1 _ x)3 _ . . . . 
1.2.3.1.2.3.23 I 

(233) 

(230) 

(231) 

(232) 
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The series is convergent, if 11 - xl< 2. If n are integer values, the infinite series 
becomes a polynomial. For example 

n = 1 

n=2 

Pi(X) = 1 
[ 

- +gj (1 - x) 1 =x 
P2(x) = 

C 
1 - g (1 - x) - 2(-1)(3)(4) (1 - x)2 

24 1 
P2(x) = +(3x2 - 1) 

Similarly 

P3(x) = +(5x2 - 3) 

3.4.1 ORTHOGONALITY CONDITIONS OF LEGENDRE FUNCTIONS. It is assumed 
that i and j are some rational numbers and m are integers. The differential equations 
in this case are 

$ L1 (1 - X2) $ P”(X) 1 [ m2 + i(i + 1) - - 
1 - x2 1 P”(x) = 0 

$ [ 2 d (1 - X ) TX ‘j”(,) 1 [ m2 
+ j(j + l) - 1-x2 1 Pjrn(X) = 0 

(234) 

(235) 

Multiplying Equation 234 by Pjm(X) and Equation 235 by Pm(X), integrating these 
products between limits -1 to +I, and subtracting these values yields 

i [Pjm; [(1 - x2)iPim] - Pim; [(1 - x’)-$jm]/dx 

1 
+ (i - j)(i + j + 1) 

f -1 
Pm Pjmdx = 0 

Since 

(1 -x2)$Pim 1 dx = (1 - x2)Pjm;Pim 

1 

-f (1 
d md m 

- x2)-P 
-1 

dx j ?ipi dx 
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1 

-1 

(237) 



Substituting Equation 237 into Equation 236, yields 

1 
(i - j)(i + j + 1) 

f -1 
P”(x) Pjm(x) dx = 

1 1 1 
(1 - X2) P”(X) $ Pjme) - pjm(x)~pim(x) = O 

-1 

if i # j and m is an integer. 

The orthogonality condition of Legendre’s function can be written in general 

1 

f -1 
Pim(X) Pjm(x) dx = 0 

if 
i#j 

where 
m = integer values 

i, j = arbitrary rational numbers 

In the present case, one has 

1 
m=l 4 

f -1 
Pil (x) P:(x) dx = 0 

if i # j. 

1 
m=O + 

f -1 
Pi(X) Pj(X) dx = 0 

(239) 

(239) 

(240) 

(241) 

if i # j. 

3.4.2 TABLE OF LEGENDRE FUNCTIONS. The Legendre functions and polynomials 
were calculated based on Equations 233 and 230. The results of the calculations can 
be seen in Table 1. 

If the values of n are not integer values, the Legendre functions can also be caku- 
lated from Equation 233; however, the Legendre functions will be an infinite series. 
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Table 1. Legendre Functions 

n pn tx) pnl tx) 

1 

X 

2 $8.2 - 1) 

a $(5X3 - 8x) 

4 -$86x4 - aox2+a) 

0 

4-T 

ax l-x F 

+(6x2 - 1)&-J? 

%(7x8 - 8x)i6-2- 

5 $(68x6 - 70x8 + 16x) +5x4 - 210x2 + 16) Jzz? 

8.5 DIFFERENT BOUNDARY CONDITIONS OF THE VIBRATING SPHERICAL 
MEMBRANE SHELLS 

8.5.1 COMPLETE SPHERE. The mode shapes can be constructed, based on Table 
1, by Equations 220 and 227. The frequency equation is given by Equation 218. 

8.5.2 HALF SPHERICAL SHELL. The membrane theory can satisfy only three 
types of boundary conditions for a half spherical shell. Figure 37a shows the boundary 
condition, when the shell is fixed in the radial direction, wn 1 x=o = 0. Figure 37b 
illustrates another boundary condition, when the shell is fixed in the tangential 
direction, vnlxzo = 0. Figure 37c shows the third type of boundary condition, when 
the stress, C$ jr0 = 0. 

a. Solution of wn ITo = 0. Since -- 

n@ + 1) Pntx) 
wn = 

(2 - BP:, 

as was proved previously. 

wntx) -4 pn(x) I,0 = O 

(227) 

(242) 

where n = 1,3,5 . . . odd numbers. (See Table 1 ) . 
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x =o 

a. wnl = 0 b. vnl = u 

+ 

--- 

b) 
vn I=0 

x=0 

C. u(J = 0 

Figure 37. Boundary Conditions for a Membrane Sphere 

b. Solution of vn I,-, = 0. Since -- 

v&) = p,1w 

as was proved previously. 

VntX) I,=0 = p,lw lXEO = O 

(220) 

where n = 0,2,4 . . . even numbers. 
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HOLE 

Figure 88. Spherical Shell with Hole 

From Equation 195 one has 

The frequencies can be calculated from 
Equation 218 and n = 1,3,5 . . for case a; 
n = 0,2,4 for case 6. 

3.5.2.1 Physical Explanation of Bound- 
ary Conditions Cases a and b. In case a, 
the shell vibrates with odd-numbered nor- 
mal modes (wl 3 5 ); in case b, the 
shell vibrates k&h even-numbered normal 

modes @Jo, 2,4. . . )* 

3.5.2.2 Case c, oil,, = 0. This case 

can be generalized mathematically for an 
arbitrary value of x = x0, and the influ- 
ence of a small hole on a spherical surface 
can be discussed. Figure 38 illustrates 
the general case. 

The boundary condition is 

yfJ, = O 
0 

No E 
%~=h=~(~ _ V2) 2 + VvcotcP- 

w p+qw 1 
Since 

x = cos cp 

Equation 244 can be expressed as 

The substitution of Equations 245 and 209 into Equation 243 leads to 

(243) 

(244) 

(245) 

= 0 (246) 
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Since 

vn = Pi(x) 

where n is unknown. Equation 246 is by substitution of the Legendre functions Pz thus 

J1-;;Zd l &P, (x) + x p; 00 

-G?$P,l(x)+Y-Pi(x)- (l+u) G2 

G-2 (2 - BP;) 
= 0 (247) 

x=x 
0 

The frequency equation is unchanged. 

(2 - Bp,2)(Ap,2 + 1 - u) 

(1 - u - Bp,2) 
= n(n + 1) (217) 

The simultaneous solution of Equations 247 and 217 leads to the unknown frequencies, 
2 

pn ’ and the indices, n. The mode shapes are represented by the Legendre functions 
and are an infinite series, since the values of n are not integers. 

A special case of this problem is the half sphere, where 

x = x0 = co,; = 0 

References 11 and 12 may be counted as classics in shell dynamics. Reference 13 
has been published recently and it also contains test results. 

3.6 A REVIEW OF BAKER’S PAPER: “AXISYMMETRIC MODES OF VIBRATION 
OF THIN SPHERICAL SHELL” (Reference 13) 

3.6.1 SUMMARY. The paper presents a study of the theory of free, axisymmetric 
vibrations of a thin elastic spherical shell and demonstrates by experiment that the nor- 
mal modes of vibration predicted by theory do exist. The author used membrane theory 
and predicted the existence of two infinite sets of modes, one of which is bounded in 
frequency and the other unbounded. The first four modes in each set are identified by 
experiments on a small steel shell. 

3.6.2 EXPLANATION OF THE THEORY. The equilibrium equations of the paper 
(1 and 2) can be compared to Equations 197 and 198 of this monograph. The differen- 
tial equations (5 and 6) of the paper are identical with Equations 199 and 200 of this 
monograph. Equation 17 of the paper, the tangential mode shape, can be obtained with 
Equation 215 of the monograph. Equation 19 in the paper defines the normal mode 
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shape, which is related to Equation 227 of the monograph. These equations differ by a 
constant, which is due to the different formulations of the displacement functions. The 
paper defined the displacement functions as the solution of an initial value problem. 
However, the monograph investigated the problem of free vibration, and the initial 
value problem was left open. The frequency equations (28 and 29) of the paper are 
identical to Equation 218 of the monograph. 

Figure 39 shows the frequency curves as published by the author. The unbounded 
angular frequencies are designated by the letters an and the bounded set by letters b,. 
Figure 40 shows the different mode shapes and Tables 2 and 3 the calculated and 
measured frequencies published by the author. 

Table 2. Comparison of Measured and 
Predicted Vibration Frequen- 
cies for rcall Modes 

Mode 

Predicted Measured 
Frequency Frequency 

(Hz) 0-W 

aO 3720 3500 

al 4570 4500 

a2 6250 6200 

a3 8350 8500 

Table 3. Comparison of Measured and 
Predicted Vibration Frequen- 
cies for “b” Modes 

Predicted Measured 
Frequency Frequency 

Mode VW (Hz) 

b2 1660 1540 

b3 1860 1880 

b4 1975 1950 

b5 2000 2000 

I 1 I I 1 I I I 

UPPER BRANCH 
I I I I 1 I I I 

80 

60 

4 

2 

1. 

:o 
C! ! ! !Z! ! ! 

0 
0 ASYMPTOTE =8/9 

I , , 
1 A ILOWER BRANCH 
Yl I 1 1 1 1 1 11 

012345678910 

FREQUENCY NUMBER ,n 

Constants: V = l/3 

A- P(l -v2)a2 
E 

Figure 39. Frequency Curves 
for Spherical Shell 
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Rigid Body Motion 
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Shape of b2 Mode 

Shape of a2 Mode Shape of bg Mode 

Figure 40. Mode Shapes of Spherical Shell 
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3.6.3 CONCLUSIONS. The paper shows the experimental evidence of the existence 
of two types of frequencies and mode shapes for a vibrating, thin-walled spherical 
shell. However, the recent theoretical investigations, using membrane-bending theory 
for a spherical shell, have shown the unbounded character of the so-called bounded 
frequencies defined by the membrane theory. 

3.7 FREE AXJSYMMETRIC VIBRATION OF MEMBRANE CYLINDERS 

The problem of symmetric free vibration of membrane cylinders is under study. In 
this case, the following assumptions can be made 

V = N9 = Nqx = Y = 0 (248) 

In addition, the inertial forces are the load functions 

a2u X = -ph- 
at2 

and 

I 

z = a2w -ph- 
at2 

(249) 

The substitution of Equations 248 and 249 into Equations 93, 94 and 95 leads to the 
differential equations of motion. 

aNx a2u 
- = ph---- 

ax 
at2 

N(4J 
a2w = pha- 
at2 

The strain-displacement functions are based on Equations 131 and 134. 

au cx = - 
ax 

W 

% = -a 
and v=o 

The substitution of Equation 252 into Equations 250 and 251 yields 

a2, v aw PV - ~2) a2, 
-w-z 

ax2 a ax E - 
at2 

au 
v--;=p 

ax 

(1 - V2) a a2, 
E at2 

(256) 

(251) 

(252) 

(253) 

(254) 
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Assuming separation of variables, the following expression can be obtained. 

u&St) = qx> T*(t) 

(255) 
w,(x,t) = w,(x) T,(t) 

The assumption of harmonic motion may be formulated 

d2Tn 
-+pp,Tn = 0 
dt2 

Let 

and A = P’l; u2) 

(255) 

(257) 

Partial differential Equations (253 and 254) can be reduced to two ordinary differen- 
tial equations, if Equations 255, 256 and 257 are substituted into them. 

V uw - -w; = - Apzs 
n a 

One of the variables can be eliminated from the last equations. The following 
equation may be obtained. 

AP,$ - Aa2p$ 

un + [l --v2- Aa2;n2]% = ’ 

wn -- = 
a - Aapfwn 

The frequency equation may be expressed as follows. 

a” = 
Apz(1 - Aa2pz) 

I l-v2- A a”$] 

(256) 

(259) 

(260) 

(261) 

where 
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Equation 258 is, in the final form 

<+A;% = 0 (262) 

The solution of this equation is written 

u*(x) = AncosXnx + B,sinX,x (263) 

The problem of free vibration may be solved by establishment of some applicable 
boundary conditions. It can be seen from previous equations that the membrane theory 
again gives a limited number of possibilities for the boundary conditions. 

3.8 EXPLANATION OF BOUNDARY CONDITIONS IN THE CASE OF MEMBRANE 
THEORY 

Let the theory of beams serve as an example. Assume that the beam is loaded uni- 
formly by load p (as shown in Figure 41). The deflection curve can then be investigated. 

Figure 41. Uniformly Loaded Beam 

The differential equation of deflection is 

IE d2y = _ M px2 pax 
ii? 

= -- +- 
2 2 

Solution of this equation is 



The two constants can be evaluated from the boundary conditions that y(0) = 0 and 
y(a) = 0. Since the differential equation is second order, the solution has two arbitrary 
cons tam%. In shell analysis the use of membrane theory leads to first-order differen- 
tial equations for the forces and displacements, when static problems are discussed, 
and therefore has only one arbitrary constant. With only one arbitrary constant, mem- 
brane theory cannot satisfy all arbitrary boundary conditions and is therefore limited 
in its application, for example: a half sphere loaded uniformly (see Figure 42). 

4 W 

V 

Figure 42. Uniformly Loaded Half Sphere 

It can be seen from the previous equations that the only boundary condition that can 
be applied for the half sphere with the uniform load is v = 0 and w = JZ$&$!) = constant. 
When other types of boundary conditions are to be applied, the combined membrane- 
bending shell theory has to be used. To avoid any misunderstanding, the beam theory 
served only as an illustration for the present shell problem, since everybody is fami- 
liar with that. However, it can be stated that there is no real comparison between 
beam theory and membrane-shell theory, since .entirely different approximations are 
used (membrane-shells -( membrane stresses, beam theory + bending stresses). In 
the case of dynamic problems, the membrane theory leads to second-order differential 
equations, and, as a consequence, the applicable boundary conditions were increased. 

3.9 PRACTICAL APPLICATIONS OF MEMBRANE SHELL DYNAMICS IN THE THEORY 
OF MISSILES 

Spherical, thin-walled bottles and spherical tanks have many practical applications in 
aerospace vehicles. The problems related to these hardware applications are mainly 
dynamics. Thus, any theoretical analysis has to be based on the concept of shell dy- 
namics; therefore, the previous basic explanations have fundamental importance. 
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4/GENERAL THEORY OF CYLINDRICAL SHELLS 

The general theory of thin elastic shells takes into account both membrane and bending 
effects. This theory can handle most of the desired boundary conditions; however, the 
equations become quite lengthy. Because of its relative simplicity, the cylindrical 
shell will serve as an example of this theory. Similar equations - but considerably 
longer and more complicated ones - can be developed for any other shell geometry. 
The symmetrically loaded cylindrical shell will be discussed first, with some examples. 
The thermal and dynamic effects are usually coupled during missile flights; therefore, 
the importance of thermal stresses in shells is discussed. Thermal stresses will also 
be discussed in this chapter, as a practical application of theory for cylindrical shells. 
Finally, the sign convention difference between Timoshenko and Fhigge will also be 
investigated (References 4 and 6), since overlooking this concept can be quite a 
disturbing factor. 

4.1 CYLINDRICAL SHELL LOADED SYMMETRICALLY IN THE CIRCUMFERENTIAL 
DIRECTION 

The cylinder is assumed to be loaded symmetrically in the circumferential direction. 
This assumption is also valid for an element of the cylinder. Figure 43 shows the shell 
element with the corresponding membrane forces, N, and N cp, and the corresponding 
bending moments, M, and q. 

The following relations can be written, as the result of symmetry 

%P = Ntpx = Mxcp = s = 0 

Figure 43. Shell Element 
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In this case, two force equilibrium equations and one moment equation can be written. 
The forces in the x-direction are unchanged. (For further information, see Equations 
90 and 126.) 

The forces in the z-direction are 

aQX 
NV@dx + Zadpdx +xad’pdx = 0 

The moment of the forces around the y-axis is 

aMX 
-g- ah@ - Q,adxdcp = 0 

Dividing these equations by adp dx, one has 

aNX 
- = -x 

ax 

IN + aQx 
a'P ax=-Z 

aMX --Qx=O ax 

(264) 

(265) 

(266) 

WV 

(268) 

Equation 268 can be written 

aMX 

Qx = --gg (269) 

The substitution of Equation 269 into Equation 267 leads to two equations of forces, 
which are now modified by the bending theory. 

aNX 
- = -x 
ax 

4.2 EQUATION OF BENDING MOMENT IN TERMS OF DISPLACEMENT 

(276) 

(271) 

The effects of bending moments on a cylindrical shell will be investigated. It will be 
assumed that the external forces consist only of a pressure normal to the surface and 
that the longitudinal force, N,, is also equal to zero. If the force N, is different from 
zero, the deformationand stress corresponding to such forces can be easily calculated 
and superimposed on stresses and deformations produced by the lateral load. The 
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following relations may therefore be written 

NX 
=x=v=o 

The stress relation given by Equation 89 is still valid 

ox = E Fx+V$) 
(1 - U2) 

% = 
E 

(1 - V2) 
CQI + v Cx) I 

(272) 

(89) 

since 

u =o 
Z 

The strain can be expressed as a function of curvature change. Because of symme- 
try, there is no change in curvature in the circumferential direction. The pure bend- 
ing of beams leads to the following relations. 

a2, cx = -zn = -z- 
X a2 

F(@ = -zxq = -z. I-J = 

where 

xx = change of curvature 

% = change of curvature 

The substitution of Equation 273 

0 = E a2w 
X 

w-z- 
(I - ~2) ax2 

E a2w 
uP = - (1 _ ~2) ” 3x2 

0 

I 

in direction x 

in direction y 

into Equation 89, leads to 

The equation of bending moment may be derived from Figure 44. 

M,adcp = (&~~xzdz)ad(P 

(273) 

(274) 

(275) 
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Figure 44. Shell Element with the Radius of Curvature 

Equation 275 is expressed by Equation 274; the cancellation of expression rradq’r 
leads to 

Since 

Mx = - 22%dz = _ Eh3 ?!h 
ax2 12(1 - 9) ax2 

D= 
E h3 

12(1 - U2) 

the bending moments are, in the final form 

2 aw M, = -D- 
a2 

q, = -vDs 

(276) 

(277) 

(278) 
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The longitudinal strain, cx, may be expressed, from Equation 272 as 

cx = - vccp (279) 

The substitution of Equation 279 into Equation 89 and the use of expression 134 leads to 

NV = -V2Ccp) = EhC Ehw -- 
cP= a 

The substitution of Equations 278 and 280 into Equation 271 yields the following 
expression. 

where 

$=Eh= 3(1 - V2) 

4a2D a2 h2 

The general solution of Equation 283 can be expressed as 

Ehw+Da$, = z 
a2 ax4 

ahw - +484w =$ 
4 ax 

(280) 

(281) 

(282) 

(283) 

w(x) = eBx (C lcos fix + C2sin/3x) +e -‘x(C3 cos Bx + C4 sin /3x) + f(x) (284) 

4.3 MAMPLES 

4.3.1 SHEAR FORCE AND 
BENDING MOMENT. Figure 45 
shows a cylindrical shell loaded uni- 
formly by a shear force, Qo, and a 
bending moment, MO, at one end. The 
cylinder is considered to be very long. 

If the cylinder is long the following 
assumptions can be made. 

Cl = c2 = 0 (285) 

MO 

Figure 45. Loaded Cylindrical Shell with 
Moments and Shear Forces 
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In this case there is no pressure, Z, distributed over the surface of the shell, and 
f(x) = 0 in the general solution. Equation 284 can be expressed in this case as 

w(x) = e -‘x(C3 co8 /3x + C4 sin 8x) (286) 

The two arbitrary constants can be obtained from the boundary conditions at the loaded 
end and may be expressed as 

aMX a3, 

&x = ax = -D- ax3 
= Q. 

x=0 

&& = -+ = MO 

x=0 

The solutions of the last equations are the following. 

c3 = --$-Dt%l+8Mo) C4 
MO =- 

2 fi2D 

The subs tit&ion of Equation 289 into Equation 2 86 leads to 

w(x) = 
p 

-[ fiM,(sin /3x - cos fix) - Q. cos 8x1 
2fi3D 

(290) 

The maximum deflection is at the loaded end. 

(fl MO + Q,) 
Wmax =w(x) =- 

x=0 2p3 D 

(287) 

G-9 

(289) 

(291) 

4.3.2 CONCENTRATED FORCE LOADING. An infinitely long cylindrical shell 
is loaded by a uniformly concentrated force system, as illustrated in Figure 46. The 
problem is to calculate the deflection of the shell, If the cylindrical shell is long 
enough and the load is far from the ends, the results of the previous example can be 
used, The boundary conditions may be set based on the condition of symmetry. 

Q. = -% and 
dw 
dx = 

0 
x=0 

(292) 
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P 

t Z 

- 

I 

Figure 46, Shell Loaded With Concentrated Force 

The substitution of Equation 286 into the boundary condition 292 leads to 

dw 
dx = (C4 - C3) = 0 

x=0 

Therefore 

C 3 = C4 

If Equations 289 and 292 are substituted into Equation 293, one obtains 

BMO) = fg 

The unknown bending moment, MO, expressed from the last equation is 

The displacement function w(x) can be expressed as 

w(x) 
@P = - (sin ti + co8 13x) 
8/33D 

(2 93) 

c-4) 

(296) 

Figure 47 illustrates the results of the theory. 
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I P 

Figure 47. Deflection, Slope, Bending Moment, and Shear Forces 

4.3,3 PRESSURIZED SHELL. Figure 48 shows a cylindrical shell clamped at the 
edges and pressurized with a uniform internal pressure. It is again assumed that the 
shell is long enough that the previously developed equations can be used. 

The unknown bending moment and shear force at the clamped edge can now be calculated. 
The membrane stresses were expressed according to Equation 190 

78 



t t t 

P 

t t t t 

I w 
MO 

Figure 48. Pressurized Cylindrical Shell 

The radial deflection can be obtained from membrane equations (280 and 190), with 
the following assumptions: N, = 0, X = 0 and Z = -p. The simple derivation yields 

Nq2a pa2 
-W=Eh =- Eh (298) 

The boundary conditions at the edge can be expressed by Equations 291, 298, and 290. 

dw 
dx I 

= &W3Mo +QO) = 0 
x=0 

The solutions of the last two equations are 

MO = .?- 
2 B2 

Q, = -+ 

(299) 

(300) 

(301) 

4.4 THERMAL STRESSES 

The importance of edge effect due to thermal expansion will be discussed as an applica- 
tion of the theory developed in Section 4.2. As an expansion of the present theory, the 
approximate theory of laminated material (honeycomb) is also discussed. 

4.4.1 BASIC PLATE EQUATION. The thermal expansion of a square plate is investi- 
gated first. Figure 49 shows the general arrangement. The temperature difference 
between the walls is At = t. 
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‘th _ at 
2 2 

H 

Figure 49. General Arrangement of Plate 

A linear temperature change through the plate is assumed. The bending moment 
can be expressed in the x-direction 

Mx = D(~+vvx,) = D 

It also may be assumed for a square plate 

1 1 1 MX -z-c-= 
r rX rY 

D (1 + v) 

The stress-strain law for a beam element 
approximation (My = 0) 

ox = E cx Ez d2w 
(1 - v2) = 

--- 
(1 - v2) dx2 

(302) 

(303) 

may be applied, in this case, as an 

The bending moment for an element may be expressed by Equation 304 

(304) 

s = fh’2~xz”z = -Ed2w j/Bz2dz = -E&I (305) 
-h/2 t1 - & dx2 -h/2 (1 - v2) dx2 
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where 
h/2 

I = z2dz (306) 

Figure 50 shows the cross-section of a homogenous plate element, and Figure 51 
illustrates a honeycomb element. 

-1 l.h3 h3 = -- =- 
12 12 

Figure 50. Cross-section of Plate Element 

1): 0 2 
= 6h2 

2 

Figure 51. Cross-Section of Honeycomb Element 
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The modulus of cross-section is 

The modulus of cross-section is, for a honeycomb plate 

KR I* bh 
=-vi= (310) 

The strain from thermal expansion, as can seen in Figure49, can be expressed as 

at ‘th Mx -- ‘thermal = 2 = E = EKE (311) 

where CY is the thermal expansion coefficient. 

Introducing the beam approximation, the following relations can be obtained 

1 Mx Mx N-z 
TX- IE EWx h/2) (312) 

Substituting the expression of Mx/Kx from Equation 312 into Equation 311 one has 

1 1 art -z-z- 
rX r h (313) 

Since the bending moments are acting in an orthogonal direction for a plate or a 
shell, Equation 313 may be expressed by the use of Equation 303 in the following form 

CYt MX -= 
h D(l + v) (314) 

From Equation 314, the expression of bending moment, Mx, is 

M, = 
crtD (1 + v) 

h 

The thermal stress has been obtained from Equation 315 as 

MX 

ax =i?- = 

crtD (1 + u) 

X hKX 

(315) 

(316) 
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The expression D is designated the homogenous plate and D* the honeycomb element. 
For D and D* the following expressions can be written 

D= E I= Eh 
3 

(1 - 3) 12 (1 - U2) 

D* = E I* = E h26 
(1 - U2) 2(1 - U2) 

(317) 

(318) 

The thermal stress for a homogenous plate can be written, based on Equations 316, 
317 and 309 as 

a, = atE 
2(1 - V) (31% 

The thermal stress for a honeycomb plate can be obtained from Equations 316, 318, 
and 310. 

a, = crtD*(l + u) otE 

%i = 2 (1 - V) 
(320) 

Conclusion. The thermal stresses are the same for a honeycomb and a homogenous 
plate, assuming the same material constants and thiclmesses. 

Equations 319 and 320 can be used as an approximation for a cylindrical shell when 
the thermal stress is induced by a linear temperature difference through the wall. 
This expression for the thermal stress does not take into account the edge effect, 
which can be significant (see Figure 52). 

Figure 52. Long Cylinder 
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4.4.2 THE EFFECT OF BOUNDARY CONDlTIONS. Figure 53 shows a clamped 
boundary condition. The radial deformation of the cylinder is due to thermal effects. 

d = acther = aa t (321) 

where 

a = radius of the cylinder 

Q 
0 

/-------- 

M DEFORMED SHAPE 
0 

Figure 53. Clamped Boundary Condition of Cylindrical Shell 

The unknown bending moment, MO, and shear force, Qo, can be calculated from 
Equations 299 and 300. 

-‘-(,6Mo+Qo) = sot 
2fi3D (322) 

@MO + Qo) = 0 (323) 

The solutions of these equations are 

MO = 2p2Daot (324) 

Q,, = -4p3Dacrt (325) 

The boundary conditions can be written 

MxIx=o = MO 

%pIso = -yd (327) 

wpI,=, = VMxIx=O = VM, 
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4.4.3 HONEYCOMB STRUCTURE. The present theory can be applied easily to a 
honeycomb structure. The following equations can be obtained 

2E6 Nq = -a~ (328) 

%=- 
EI* d2w d2w - = -I)*- 

(1 - v2) dx2 dx2 
(329) 

where 

,,* = E6h2 
2(1 - U2) 

(318) 

The substitution of Equations 328 and 329 into Equation 271 leads to 

d4w 2E6 Z -++ww- 
dx4 a2D* D* 

or 

(330) 

(331) 

where 

fyLE6= (1 - Y2) 
2a2D* a2 h2 

(332) 

The shear force, Q,, can be obtained by substituting Equations 318 and 332 into 
Equation 325. 

403D*acrt = - 26Eat JJ l/2 
Q. = - 0 (1 _ $)li4 a 

An approximate formula for the shear stress in the core may be written 

Qo 26Eat 
?=?i- = 

(ah) 
l/2 2 l/4 (1-V) 
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4.4.3.1 Stresses in the Circumferential Direction. Application of Equation 321 to 
Equation 298 leads to 

NV = 
2E6 

--a& = - 2E6at 
a 

When Equations 318 and 332 are substituted into Equation 324 one has 

MO = 2$D*aot = 
E6hcut 

(1 - Y2)1’2 

The bending moment, % can be calculated from Equation 326 

qIxzo = vMxI~=~ = ~Mo = ;Es 

The stress, ov, has three components in the circumferential direction 

Ql 
x~E(L!tMO 

2(1 - V) X 

U”O VEcrt 
Q2 =-Tic ==F K-2 

Q3 
NV 

=26= - Eo’t 

(335) 

(336) 

(337) 

(338) 

(339) 

(3-o 

Figure 54 shows the stresses separately. 

The maximum stress, Up is in the circumferential direction 

O’Plmm = a91 +O’P2 + ‘93 = - 2ylY~) [l+2V]z+ ,,,_,)j (341) 

Assuming Poisson’s ratio, v = 0.17 

Uqlmax = - 2(;Ttv’h + 0.286 + 1.661 = -3[e)] (342) 

The last equation shows that the clamped edge can triple the thermal stress. Similar 
problems can be found in Reference 4, pages 497-501. 
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t1 > t 
2 

t = TEMPERATURE 
-- DEFORMED SHAPE 

(-) - COMPRESSION 
(+) -TENSION 

Figure 54. Illustration of Thermal Stresses 

One has to be aware that the previously developed formulas of thermal stresses are 
approximately valid, as long as the theoretical assumptions approximate the physical 
reality. 

4.4.4 EXAMPLE, THERMAL STRESS CALCULATION. A long, clamped honeycomb 
cylindrical shell has the following physical properties: 

a. Modulus of elasticity, E = 3.2 x lo6 lb/in,2 

b. Radius of cylinder, a = 21.5 in. 

C. Poisson’s ratio, y = 0.17 

d. Shell thickness, h = 1.75 in. 

e. Skin thickness, 6 = 0.045 in. 

f. Thermal expansion coefficient, o! = 4.93 X l@ in. /in. ’ F 

g. Temperature difference, t = At = 300” F 
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The thermal stresses can be calculated as follows. First, calculate the maximum 
shear stress in the core. Second, calculate the maximum circumferential stress at the 
clamped edge. The shear stress in the core can be computed by Equation 334. 

7 core = 
(0.09)(3.2 x 106)(4.93 x 10’6)(300) = 7. lb,in2 

(21.5 x 1. 75)1’2(1 - 0. 172)1’4 
. 

If a = 14.8 in., 7core = 84 lb/in.2 . 

The maximum circumferential stress was computed from Equations 338 and 341. 

%1 = 
(3.2 X 106)(4. 93 X W6)(300) = 2850 lb,in2 

2(1 - 0.17) 

O(P, max = 2.946 X 2850 = 8400 lb/in2 

4.5 COMBINED BENDING - MEMBRANE THEORY OF CYLINDRICAL SHELLS 

The theory discussed up to now was restricted to the case of a uniform force distribu- 
tion in the circumferential direction. The present theory will discuss the problem in 
general. Figure 55 shows the forces, and Figure 56 illustrates the bending and 
twisting moments on the same shell element. 

Figure 55. Cylindrical Shell Element Under General Loading 
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Figure 56. Bending and Twisting Moments 

The equation of forces in direction x is identical with Equation 93; therefore, the 
final result of the calculation is 

aNX 1 aN, 
-ax 

+-- = -x 
a acp 

The forces in the direction y were written based on Figures 55 and 57a 

aQQ _ QpdxT - (q+ =dp)dx$+ Yadpdx = 0 (344) 

(343) 
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a. b. 

Figure 57. Directional Forces 

Neglecting a second-order shear term, in the final form, Equation 344 is 

1 aN, aNW Qp -- +--- = 
a acp ax a 

-Y (34 5) 

The forces in the direction z can be obtained, based on Figures 55 and 57b 

Qx adq- Q,adV + 

+ Nqdqdx + Zadqdx = 0 (346) 

Since several terms were cancelled out in Equation 346, the calculation yields finally 

aQx la%+~=-z - +-- 
ax a acp a (347) 

The moments around the x-axis may be obtained, based on Figures 55 and 56 

dx - %dx - 
aMw 

Mxcp + rdx 

+M -aW - Qpdxadq = 0 
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Equation 348 is, in its final form 

1 a% a% 
-----%= a* ax 

0 

The moments around the y-axis can be written. based on Figures 55 and 56 

Mx + 

aMX xdx adcp - MxaW + %px + %W)dx 

- sdx - Q,adcpdx = 0 

Cancelling out several terms, Equation 350 is, in its final form 

aMx 1% 
-+----Qx=O ax a acp 

(349) 

(350) 

(351) 

A sixth equation representing the moments around a radius of the cylinder may be 
obtained 

NW adqdx - NWdxadq + MVxdx@ = 0 (352) 

Equation 352 is, in its final form 

% Nw-Na+a=O (353) 

Some authors have neglected the last term in this equation, as a second-order quantity; 
therefore, Equation 353 may be modified as 

Nw = Nm (354) 

(For a further explanation of Equation 352, see Figures 55 and 56. ) 

The substitution of the shear force Qp in the terms of moments (from Equation 349) 
into Equation 345 leads to 

1 aN, aNxcp 1 a% 1 a%ip -- 
a w 

+--s&- +--- z-y ax (355) 

The shear forces Qx and Qp can be eliminated from Equation 347 by the use of 
Equations 349 and 351. One then has 
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a2Mx 1 a2M@x 1 a2M(p 1 a2Mxq Nrp - +-- 
ax2 a axacp 

+-----++ z-z 
a2 acP2 a axacp a (355) 

Summary. The three equilibrium equations of the shell element were expressed in 
terms of moments and membrane forces. 

aNX 1 aN,, 
ax +aacP= -x 

1 aN(Jl aNxofJ 1 a% 1 aMxcp --++--s-.Ms++-= 
a acp ax ,2 ap a ax 

-Y 

a2111 
X 1 a2Mqx 1 a2% 1 a2M 

+-- +-- w NP 
ax 2 a axacp a2 a(p2 

------+-=-z 
a axacp a 

(357) 

WJ~) 

(359) 

The two auxiliary equations for shear forces and the one for the membrane shear 
force can be expressed from Equations 349, 351, 353 and 354 

(-+ = laM,-aM* 
a w ax 

aM, 1 %px 
Qx=x+-- a acp 

NW 
MW = NW+- 

a 
or Nw = Npx 

(366) 

(361) 

(362) 

4.5.1 SIGN CONVENTION DIFFERENCE BETWEEN TIMOSHENKO AND FLiiGGE. 
Figure 58 shows the sign convention for moments of Timoshenko and Figure 59 for 
Fhigge . 

The sign convention of the shear forces, Qp and Qx, are also opposite; however, the 
opposite direction of axis z cancels out the effect. Figure 60 illustrates the differences. 

Comparison of the two authors I works can easily lead to confusion since their equa- 
tions are different in signs. The following transformations can be introduced to 
compare the same equations 

Z T = - ZF 

WT = - WF (363) 

Mx(pIT = - MdF 



X 
// 

hix +AM 
X 

TIMOSHENKO 

Figure 58. Sign Convention (Timoshenko) 

4.5.2 STRAIN-DISPLACEMENT RELATIONS. The membrane theory considered 
only the stretching and compressing effect of the middle surface of the shell element. 
This theory ignored the stress variation through the thickness of the shell. The 
membrane-bending theory will correct this error. The deformation of the shell is 
illustrated by Figures 61 and 62. 

The cylindrical shell is defined by radius a and thickness h. Figures 61 and 62 
show only half of the shell thickness. An arbitrary point A is located in the middle 
surface and an arbitrary point A is located a distance z from the middle surface. The 
membrane theory considers only the deformation of point A on the middle surface. 
The combined theory will be defined by the deformation of point A, which includes the 
membrane deformation and an additional rotation. The following assumptions were 
made : 

a. All points lying on a normal to the middle surface before deformation are in the 
same position after deformation. 

b. The distance A,A is unchanged after deformation, which means the stress 0, in the 
z-direction may be considered negligible compared with the stresses ox and op. 
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I Z 

Q 

Figure 59. Sign Convention (Fiigge) 

TIMOSHENKO FL&GE 

Figure 60. Shear Force and Displacement Conventions 
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Figure 61. Shell Deformation in Radial Direction 

= sincp 

Figure 62. Shell Deformation in Circumferential Direction 
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Let the undeformed state be designated by the unprimed letters and the deformed 
state by primed ones. Figure 61 illustrates a section of the cylinder along a generator. 
The displacement, uA, of point A is therefore equal to the displacement, u, of point 
A, minus the distance A is shifted back by the rotation of A> 

= A,A; aw 
UA -zsinQ=u-z- 

ax 

The circumferential displacement, VA, can be derived from the transverse section 
of the shell, as illustrated by Figure 62. The point A, is displaced by v along the mid- 
dle surface, and since the normal A3 stays normal to this surface, the point A is 
displaced by v(y) . The rotation of the normal is $ $, and it produces an addi- 

Z&4 tional displacement, - -a aQ . The displacement of point A in the circumferential 
direction is 

- zsinQ (365) 

The distance fro is unchanged during deformation because of assumption b. and 
because the slope of the deformation is small compared with unity. Furthermore, the 
displacements are also small compared with the radii of curvature of the middle sur- 
face. For these reasons, the following equation can be written 

w=w A (366) 

Since the motion of point A considered the elongation and rotation simultaneously, the 
equations derived for memhrane theory may be used with the replacement of a with 
(a - z). 

The longitudinal strain can be derived by the substitution of Equation 364 into Equation 
131. 

auA au a2w 
EX=-=--Z- ax ax ax2 (367) 

The circumferential strain was calculated similarly; the substitution of Equations 365 
and 366 into Equation 134 leads to 

-&- 
Z a2w 

a@ - z, aQ2 
(363) 
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Similarly, the shear-strain may be derived from Equations 135, 364 and 365 

1 auA avA 1 au (a- Z) av yw=(a--+p=-- 
z) acp ax (a- Z) acp + --- (; +A)& a ax 

(369) 

4.5.3 FORCES AND MOMENTS IN TERMS OF DISPLACEMENTS. The forces and 
moments may be derived based on Figure 63. It is necessary to consider, first, an 
element in the cross-section (such an element has been shaded in Figure 63). 

Figure 63. Cross Section of Shell Element with Stresses 
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(a- z) Because of the curvature of the shell, its width is not simply adq, but adq a. 
The force in the direction x may now be written 1 

h/2 
N,(adcp) = f 

o,(adq) @-I-!!) dz 
-h/2 

a (370) 

Since the factor (adq) on both sides is dropped, a relation is derived between the force 
N, and stress ox. Equation 370 can be expressed 

N, = dr’Jx(y)dz (371) 

The rest of the forces were obtained from similar derivations 

h/2 
N cp= f 

N (372) 
-h/2 

uqdz , xcp = ~~rW~~)dz, NW = drrWdz 

The change of curvature has again been considered in the calculation of moments. 
The width of the shaded element is adP v and this was applied to obtain the bending 
moment, M, 

M,(aW) = (a - z) 
oxlaW) --g- zdz 

The cancellation of the common factor adq leads to the expression of bending 
moment, M, 

h/2 
Mx = 

s 
ax’- a - z) zdz 

-h/2 
a 

(373) 

(374) 

The bending moment, %, and furthermore, the twisting moments, Mxq and %, can 
be calculated similarly 

h/2 h/2 
&Q = i” 

-h/2 
oVzdz; Mxq = - f 

(a-z) T~Z dz (375) 
-h/2 

rw a zdz,Mw= f -h/2 

There is no change of curvature of the strip element; consequently, the term repre- 
senting this effect is unity. The stress-strain relations can still be obtained from the 
equations of membrane theory, since the stress, u,, is assumed to be small compared 
with the others. These equations can be written as 
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(376) 

The substitution of Equations 367 and 368 into Equation 376 and again into Equation 
371 leads to expressions for forces. The stress ax is 

(TX = 

The force N, is, from the previous considerations 

(377) 

(378) 

The following calculation will show the treatment of logarithmic functions. The sub- 
stitution of Equations 367 and 368 into Equation 376 and again into Equation 372 leads to 
the expression of force, NV 

1 av 2 
Z aw W --_~-_- 

a acp ala-z) a(p2 a-z 

The integration of this equation leads to 

NV = au --z + w&n(a-z) + Uax 

1 a2, h/2 
+ - - 

aat+ 
z + a ,kn(a - z) 

-h/2 

It is well known from the series expansion of the logarithmic function that 

h(S) = -2(x+;+$+ . ...) 
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In the present case, the following relation can be written 

=-2h+h3+ c 2a ~4~3 “” I 
where 

0 < ga << 1 

The rest of the terms were neglected as second-order quantities. 

The application of Series 382 into Equation 380 leads to 

NvJ = xL[_l(av - w) + vg] - 12(1Ep;2)a3(w+$) 
(1 - V2) a W 

The bending moments M, and % can be calculated easily also 

M, =- 

(382) 

(383) 

(384) 

(385) 

The comparison of these equations with Reference 6, page 214 shows opposite signs 
in the terms of displacement, w. This difference can be found in the opposite sign 
convention of displacement w, as it was referenced in Subsection 4.5.1. 

4.5.4 SIMPLIFIED EQUATIONS AND DONNELL’S DIFFERENTIAL EQUATIONS OF 
EQUILIBRIUM. In some cases the simplification of the general equations can be 
obtained; however, there is no golden rule for the general applications of the approxi- 
mate equations. The basis of the following equations is to neglect terms which were 
generated from the curvature change (terms z/a). The equations of forces are, in 
their simplified forms 

N, = Eh(C 
(1 - U2) 

x + veq), NV = =(cq+vcX), Nxq = Nm = 
(1 - V2) 

GhyW (386) 

where 
au iau av Ex=-, ax yw=--+z 

a w (387) 
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In Equation 386 the shear forces, NW and NW, are equal, which assumes that the 
twisting moment, A$, is also zero in Equation 353. This approximation can sometimes 
lead to a contradiction. Equation 386, in this simplified case, represents the membrane 
forces. The bending and twisting moments, in the simplified case, are 

Mw=%= Eh3 
12(1 + V+Q 

where 

32, n, = - 
3x2 

1 'av a2w 
% = ,2(a(p + a(p2 1 

(388) 

(389) 

1 av a2, 
Xl@ = a ax ( + - axacp ) 

4.5.4.1 Donnell’s Differential Equations of Equilibrium. A simplified form of shell -___ 
equation may be derived based on Donnell’s assumptions. The substitution of Equations 
386 and 388 into Equations 357, 358 and 359 yields the three differential equations of 
equilibrium. Equation 391 was derived by neglecting the terms of bending theory or the 
terms containing h2. Neglecting the third-order circumferential displacement terms, 
v, from Equation 392, a third equation was obtained in a final form. 

a2u I (1 - v a2u + (l+ a2, _ ;g = _ Xcy) 
ax2 2a2 a,pz 2a axacp 

(1 + V) a2, 
-axacp+ 

a(1 - V&V +1a2v 1 aw ----=- Y(l - v2)a 
2 2 ax2 aa a acp Eh 

(390) 

(391) 

au 1 aV W h2 a-_- _- 
‘ax + aa9 a 12 

a(1 - v2) 
Eh (392) 
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5/FREE VIBRATION OF CYLINDRICAL SHELLS 
WITH MEMBRANE-BENDING THEORY 

The free vibration of cylindrical shells can be discussed on the basis of the theory of 
Section 4. The general theory of cylindrical shells enables us to investigate the effects 
of different edge conditions and the circumferential waves of the mode shapes. Three 
typical papers are reviewed. Each of them reported the solutions from different points 
of view: 

a. The first paper (Reference 14) used Donnell’s equations, and the frequency and 
mode shape equations were developed for relatively long cylinders. The applicable 
numbers of edge conditions are limited. 

b. The second paper (Reference 15) utilized the general equations of cylindrical shells. 
The frequency and mode shape equations were developed, their solutions having 
been based on a numerical iteration scheme. Ten different edge conditions were 
discussed. 

C. The third paper (Reference 16) discusses the energy method via Lagrange’s equa- 
tion of motion. The validity of the theory was also demonstrated by experiments. 

5.1 A REVIEW OF YU’S PAPER: “FREE VIBRATIONS OF THIN CYLINDRICAL 
SHELLS HAVING FINITE LENGTH WITH FREELY SUPPORTED AND CLAMPED 
EDGES” (REFERENCE 14) 

5.1.1 SUMMARY. The free vibrations of thin cylindrical shells are investigated on 
the basis of Donnell’s approximate equations. A simplifying assumption was introduced 
for relatively long cylinders, and a simple solution was developed for the mode shapes. 
In this manner the frequency equation is also simplified. Three different edge condi- 
tions were discussed: 1) both edges simply supported, 2) one edge simply supported 
and the other clamped, and, finally, 3) both edges clamped. The frequencies are the 
highest for the clamped-clamped case, the lowest are for the simply supported case, 
and the frequencies of the clamped-simply supported case are between the two other 
cases. As a result of approximations, the characteristic equations for the three cases 
are found to be similar to the frequency equations for the lateral vibration of beams 
with similar end conditions, modified by the circumferential wave numbers. The applic- 
able number of edge conditions are limited due to the approximations used in the devel- 
opment of the theory. 

5.1.2 EXPLANATION OF THE THEORY. In the case of free vibration, the external 
forces can be expressed in terms of inertial forces 

x = a2u 
-ph-, 

a2v 
at2 y = -phat2’ 

a2w z = -oh- 
at2 (393) 
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The substitution of Equation 393 into Equations 343, 345 and 347 leads to the first 
three equations of Yu’s Equation 1. The fourth equation of Yu is the same as Equation 
349 of this monograph, the fifth is the same as Equation 351, and the sixth is the same 
as Equation 354 of this monograph. Equation 3 of the paper is identical to Equations 
390, 391 and 392 of the monograph, when Equation 393 is substituted into these equa- 
tions. Equations 3, 4 and 5 of the paper are cited here 

a2, (1 - V) a2u (I+v) a2, v aw -++-+ -----= ____ - 
ax2 2a2 ad 2a axacp a ax 

(I- v2) p a2, 
E at2 

c31 

(I + U) a2, (I-U) a% I a2, --+--+-- 
2a axa 2 ax2 a2 a+ 

r51 

where 

v4 = v2 a2 a2 .v2= --+- ( a2 a2 
a2 I( 

-+- 
a2a(p2 ax2 a2 a,pz 1 

-2- a2 2 
Applying a,2 I a~ a$ and at2 to Equation 3, solving in each case for the term 

involving v, and substituting these expressions in the equation obtained by applying 
a2 ___ to Equation 4, the following equation was obtained. d&o 

v4u - va3w 1 a w 3 
-- +-- = - 2(1 + V) 
a ax3 a3 axa(p2 E 

(3 - V) v2u + v aw 3- 
2 a ax 1 [61 

a2 a2 a2 - Similarly, applying a,~ , .2 a(p2 and at2 to Equation 4, solving in each case. for the 
a2 

term involving u, and substituting these in Equation 3 (after applying ___ 
aaxacp to it), one 

obtains 

v4v _ (2 + V) a3w 1 a3w 2(1 + V) a2 (I- v2) a2v ~___ _-- = _~ 
a2 ax2atp a4 a(p3 E PG --rp- [ at2 

(3 - V) v2v + 1 aw -- 
2 a2 acp 1 c71 
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It can be seen that v was eliminated from Equation 6 and u from Equation 7. A third 
equation can be derived, which contains only w as an independent variable. Applying 
va 
; g to Equation 6 and i2 &, -- to Equation 7, and adding the results, the resulting equa- 

tion contains terms w and ( 
I av z 2 + ~2 &j) . The resulting equation can be expressed in 
Y au terms of w, since the expression --a g + 1.3) 

( .2 acp 
was obtained from Equation 5, as the 

function of w. The derivation yields finally 

h2 g8w + (1 - ~2) a4, 2(1+~) a2 - = _-- 
a2 ax4 E Pat2 

3-v 2 
-20 1 

(l- ~?~a2, +w + h2 
E at2 a2 3 

4, 1 +jl+> 4 
TV 

GWw 1 a2, 
w+-- +-- a2ax2 a4 a(p2 

The problem of free vibration was reduced now for the solutions of Equations 6, 7 
and 9. It is assumed that the shell vibrates with normal modes and with an angular fre- 
quency, w. The displacement components, u, v and w, are proportional to a simple 
harmonic function of Wt. The displacement functions must also be periodic in Cp with 
period 2 71; therefore, its components must be proportional to the sine or cosine of 
multiples of cp . Equations 6, 7, and 9 can be satisfied generally with the following 
functions . 

8 

c 
Xj~ 

u = Ai e cos mcP sin wt 
i=l 

8 

c 
xi+ 

v = Bie sin rncP sin ot 
i=l 

8 

c 
Xi+ 

w= Ci e cos mcP sin wt 
i=l 

ho1 

in which fi is the length of the cylinder, m is an arbitrarily chosen positive integer 
equal to the number of circumferential waves, Xi are the characteristic values of the 
eigenfunctions, and Ai, Bi and Ci are constant coefficients. Since Equation 9 is eighth- 
order and its auxiliary equations are of the eighth degree and have eight roots, each of 
the foregoing summations contains eight terms. This is the explanation of the summa- 
tion of Equation 10. The substitution of Equation 10 into Equations 6, 7 and 9 leads to 
lengthy equations which can be solved by some numerical technique. For the sake of 
simplicity, our investigation is restricted to relatively long cylinders. In this case, 
the following assumption may be made 
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[Xi21a2 

m2J2 
<< 1 Cl41 

The use of Inequality 14 reduces these lengthy equations to the following form 

Ai = Ci\M% (i = 1, 2, 3,4) El51 

Bi = CiN (i = 1,2,3,4) cl61 

2n3 - a2 [2 + (3 - V) m2 + 2km41 

+ Q [(I - v)m2(m2 + 1) + (3 - v)km61 - (1 - v)km8 Cl71 

where 

h2 k = - 
12a2 

fi = (1 - V2Jpa2d 
E 

M= 
2VSl + (1- v)m2 

2@-(3- V)m2L? + (l- V)m4 

NE - 2mS1+ (1 - V)m3 

2 a2 - (3 - V)m2a + (1- v)m4 

Equation 17 is the frequency equation, and a specified boundary condition, xi, is 
determined; thereafter, the single unknown will be 52, which contains the frequency. 
Since Equation 17 is fourth-order, the summation of Equation 10 has to also be reduced 
to four. Therefore, Equation 10 has four sets of values of Ai, Bi, and Ci. The root of 
Xi can be obtained in the form 

iI, = 4, = K and x3 = -x4 = iK cl81 

where K is a real number. 
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By the use of Equations 15 and 16, the displacement functions can be written 

U = -fMkCi$e $5 
cos mcp sin Ot 

i=l 

4 
V = Xii 

NC tie sin mcp sin ot 
i=l 

4 
w= c c,,“lf co9 mcp sin ot 

i=l 

c10*1 

5.1.3 SHELLS WITH BOTH EDGES SIMPLY SUPPORTED. The boundary conditions 
for this case are 

v=w=%=O 

In the expression of bending 
order quantity; therefore 

at x=0 and x=R 

moment, Mx, the term1 av was neglected as a second- 
a2 acp 

M, = - 

The substitution of displacement functions lO* into the boundary conditions lead to 

4 
w lxzo = vlxzo = O c Ci = 0 

i=l 

and 

WIxza = VlxzA= 0 h ‘iki = O 

i=l 

4 
MxIxzo = 0 c CiAi2 = 0 

i=l 

and 4 

%l,=,= O c C.X?,xi = 0 
i=l ’ ’ 

i191 
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Figure 64 shows the general arrangement 

Figure 64. Illustration of Edge Conditions for Simply Supported Shell 

The equations represent the boundary conditions and have two sets of unknown quan- 
tities, Xi and Ci. TO find Xi, EquationlO*was substituted into the boundary conditions; 
the non-trivial solution of the homogeneous equation system requires that the deter- 
minant of the system must be zero 

1 1 1 1 

eK esK .iK e-iK 

K2 K2 -K2 -K2 

K2eK K2esK -K2,iK K2e-iK 

The solution of the determinant is 

16 iK4 sinh K sin K = 0 

Equation 20 is equivalent to 

sin K = 0 

The characteristic values of K are therefore given by 

K = n77 

where n = 1,2,3 . . . . 

= 0 

ho1 

r20*1 
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The roots of Xi are 

Xl = nr X2 = -n71 1, = inI7 A, = -inlT 

By substituting \ in Equation 17, the frequency equation becomes 

2513 - Cb2[2+(3-V)m2+2km4] + Q[(l-V)m2(m2+ 1) 

+ (3 - V)km6] - (1 - V)km8 - (1 - u)(l - G)(F) 
4 

= 0 [211 

By use of a chosen value of n and m, the frequency can be obtained easily from the last 
equation. 

Any three of the coefficients Ci may be put in terms of the fourth one by substituting 
the values Xi just obtained into any three of Equation 19; the solution is 

Cl = c2 = 0 and c3 = -c4 

The displacement components can be written by the use of Equations 15, 16 and lo? 

n71a n71x u = MC7 cos--,-cos mcPsin cL’t 

n’lTx v = NC sin - a sinmcPsinWt 

nI7x w = C sin - a cos mcp sin ot 

where C is an arbitrary constant. 

5.1.4 SHELLS WITH BOTH EDGES 
CLAMPED. Figure 65 illustrates the 
general arrangement 

The boundary conditions can be satis- 
fied without difficulty 

a, u=v=w=-=o 
ax 

at 

x=0 and xz? a 

[221 

Figure 65. Illustration of Edge Condition 
for Clamped Shell 
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When displacement functions lO* are substituted into the boundary conditions, the 
following equations can be written 

VI =wl =o 5ci= 0 and VI =wl = 0 &Ciexi=O 
x=0 x=0 i=l xc&? x=R i=l 

t-26 I- 

aw 
zx=; I 

4 4 
UI XdJ = 0 CCiXi=O and 2 I = ul = 0 xCihieXi= 0 

i=l x=a x=a i=l 

With the previous considerations, the determinant of the homogeneous equation 
system is 

1 

eK 

1 1 

eBK e iK 

1 

-iK e 

K -K iK -iK 

Ke 
K -KeeK iKe iK -iK -iK e 

The solution of the determinant is 

or 

8iK2(cos K cash K - 1) = 0 

(cos K cash K - 1) = 0 

Let K assume the form 

K = n’n 

The solution of Equation 27 yields the values of n’ 

f n = 1.500, 2.500, 3.500, etc. 

The four roots of Xi are 

Xl = -A, = nf71 and X3 = -X4 = in’77 

= 0 

[271 

The substitution of the last equation into Equation 17 results in the frequency equation. 
The values of Ci can be derived as in the previous case; the displacement functions are 
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w = 2 Cl [(sinh n’n - sin nf 77) 

- (cash n’n - cos n’77)]‘1 (sinh nflT - sin n’71) coshe 

nf7Tx n’Rx 
- COST - (cash n’77 - sin- a )I co8 mcP sin wt 

Na aw 
V = --- 

m as I 

5.1.5 SHELLS WITH ONE EDGE SIMPLY SUPPORTED AND THE OTHER EXE 
CLAMPED. Figure 66 illustrates the boundary conditions. 

The boundary conditions are 

wq.l=&&=o atx=O 

aw 
u=v=w=-=o ax atx= a 

which lead to 

c Ci = 0 , C Ci Ai2 = 0 
i i 

x 
A. 

(i = 1,2, 3,4) 
Cie’ = 0, c 

1 
Ci Xi exi=O 

i i 

/ 

2a / 

/ 

I 
/ 

. 
/ 

-5 
I- v 

Figure 66. Illustration of Edge Conditions 
for Clamped Simply Supported 
Shell 111 

Equating the determinant of the coeffi- 
cients of Ci to zero yields 

tanK-tanhK = 0 c301 

the roots of which are 

K = n”71 

with the consecutive values of nN equal to 

1.250, 2.250, 3.250, 4.250, . . . . 



The four roots of Xi are therefore 

A, = n”7T, A, = -nN71, X3 = in’7l, A, = -infir 

To illustrate the theory, Professor Hoppmann’s model and test results were used. 
The following constants were considered 

a = 1.9575 in. h = 0.065 in. E = 10 x lo7 lb/in.2 

a = 15.53 in. v = 0.35 

Table 4 shows the test results (upper right numbers) and the results of theoretical cal- 
culation (lower left numbers). The “W refers to the error between the theory and test 
results. 

Table 4. Experimental and Theoretical Frequencies of Simply Supported Case 

(Frequencies in Hz) 

1 2 I 3 I 4 
742 1880 

12% 27% 
832 2395 

1330 1740 
10% 3.7% 
1460 1805 

2480 
5% 
2610 

4060 
1% 
4120 

2680 3040 3710 
0% -1.5% -2.5% 
2680 2990 3620 

- 
4120 4340 4780 

0.5% -3.2% -8.3% 
4140 4210 4420 

__ -----___ 

5.1.6 CONCLUSIONS. The paper reduced the free vibration of a thin cylindrical 
shell to the longitudinal direction for beam modes and to circumferential direction waves. 
The merit of the paper is its simplicity, the drawback of the theory is its limitations. 
The theory may be used for thin cylindrical shells with a length-to-radius ratio of 
g/a 2 4. 
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5.2 A REVIEW OF FORSBERG’S PAPER: “INFLUENCE OF BOUNDARY CONDITIONS 
ON THE MODAL CHARACTERISTICS OF THIN CYLINDRICAL SHELLS” 
(REFERENCE 15) 

5.2.1 SUMMARY. The theory has investigated all sixteen sets of homogeneous bound- 
ary conditions at each end of the shell. The equations of motion of the cylindrical shell 
were developed from Flkge’s shell equations. The general solution of these equations 
was derived; however, the evaluation of the integration constants was obtained by 
numerical integration. With given sets of boundary conditions, length of cylinder, and 
an assumed circumferential modal pattern, a numerical iteration can be performed to 
find the frequency of vibration which will meet these conditions. The paper made an 
extensive parameter study and covered a great range of the variables. The paper also 
showed the peculiar frequency dip which was discovered previously by Arnold and 
Warburton. The frequency has been determined to six significant figures; such accu- 
racy was necessary in order to obtain accurate values for the mode shapes. The 
numerical computation was done on an IBM 7094 computer. 

5.2.2 EXPLANATION OF THE THEORY. Equation 1 of the paper can be derived 
from Equations 357 through 361; furthermore, Equation 393 is used to arrive at the 
equilibrium condition of the shell element. The sixth equation was derived from the 
moment equilibrium around the radius of the cylinder by Equation 353. All the equa- 
tions have to be changed to Fliigge’s notation, Subsection 4.5.1, to agree with the paper. 
(The last statement is related to Equations 357 through 361. ) The strain-displacement 
equations of the paper can be expressed from Equations 378 through 385, etc. Again 
the sign convention of Fliigge has to be considered. 

The differential equations of motion can be written, based on the previous substitutions 

1-v U” + 2 (1 + k) u” + T vf’ - bIf’+ 1-v 
-Fkw 

1 
1+v (-1 a2, 

2 
u”+ v” + y (1 + 3k)vN- ?+/-+w- _ g- = 0 

at2 

-h’“+ A+~..+vu’- $!kv”-+v-+ w 

where 

a0 0’ = ax1 

P= 
pa2(1 - v2) 

E 3 

0’ a0 = - 

k = h2” 
12a2 

Cl1 
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The general solution of Equation 1 can be written similarly, as was done in Refer- 
ence 14, Equation 10. It can be proved that Equation 1 can also be reduced to an eighth- 
order equation of displacement, w. The general solution is 

\ 
8 

u = c 
bx 

sAse cos ncp e iwt 

s=l 

8 
v = 

c B, A, ehsx sin ncp eiot 
s=l 

8 

w= x 
bx 

ASe cos ncp e iwt 

121 

s=l J 

The substitution of Equation 2 into 1 yields an eighth-order algebraic equation for As 

’ g& + g + gs2c +gso = 0 c33 

where 

It can be shown that the solution of Equation 3 for vibration problems can always be 
expressed 

x = *a, *ib, *(c *id) 

where a, b, c, and d are real quantities. The displacement w can be expressed, based 
on Equation 1 and the last equation. 

-ax + C2e + C3 cos bx + C4 sin bx 

+ ecx(C 5cos dx + C6sin dx) 

+ eCX(C7 cos dx + C8 sin dx) 
3 

iLLIt cos nq e [41 

Similar expressions can be derived for displacements u and v. Equation 4 has been 
rewritten so that the complex constants, A,, have been replaced by real constants, C,. 
The equations of displacements, u and v, involve combinations of the constants, C,, 
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the real and imaginary parts of as and 8,. Since cys and 8, depend on X,, h/a, V, n 
and w, after the solution of Equation 3 is obtained, CY~ and 8, can be evaluated. 

5.2.3 BOUNDARY CONDITIONS. The author uses Kirckhoff’s definition in formulating 
the boundary conditions. The normal shear force, Sx, may be expressed by the com- 
binations of shear force, Qx, and twisting moment, MxV; furthermore, the tangential 
shear force, TX, may be expressed by the combinations of membrane shear force, NxP, 
and twisting moment, MxV. Figure 67 shows an element of the cross-section of a 
cylindrical shell with a twisting moment, MxV, on a length of da. The twisting moment, 
Mx(p . da, on the element may be replaced by an equivalent group of three forces. 

The two forces Fn on the left element are almost parallel to each other and must 
therefore have a moment equal to MWds; hence 

F, a de = MxVds (394) 

Since they are slightly divergent, they have a horizontal resultant, F,d(P, pointing to 
the left, which is compensated by the third force, Ft = F,dV. The three forces are 
statically equivalent to the distributed shearing stresses, which yield the twisting 
moment, Mxcp. The shear force, TX, acting in the tangential direction can be calcu- 
lated, based on Figure 67, as 

Ft FnW TX = NxP - ds = NxV - - = N 
FnadfP 

ds xq - ____ ads 

The following relations can be written, based on Equation 394 

F, a dSo = F, ds = Mxgads 

The substitution of the last equation into Equation 395 leads to 

M Xcp TX = NxV - - a 

The normal shear force, S,,, can be expressed, again based on Figure 67, as 

%=Qx+ 
($dP)= Q 

ds X+ 

($a@) = ~ $ds 
ads 

+ 
ads 

Equation 394 may be expressed as 

aFn a%J’ ds -ds = ~ 
acp acp 
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(395) 

(396) 

(397) 

(398) 



ds-sds 

F 
n Fn 

Figure 67. Shear Forces 

The substitution of Equation 397 into Equation 398 yields 

sx = &x 
1 aM +-2 
a acp (399) 
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Table 5, published by the author of Reference 15, shows 10 different edge conditions. 

Table 5. List of Edge Conditions 

Case 
No. Description 

Boundary 
Conditions 

x=0 x= a/a 

Simple support with- 
out axial constraint 
(called “freely 
supported”) 

w =o 

V 
,,I; Same 

Nx=O 

Simple support with- w =o 

out axial constraint V =0 Same 
at one end, withaxial M,=O 
constraint at other N,=O u=O 

Simple support with w =o 
axial constraint u 0 = 

v =o Same 

Mx=O 

Simple support, no w = 0 
tangential constraint M, = 0 
(similar to Case 1, N,=() %lrne 
with v # 0) TX=0 

Simple support, axial w = 0 
constraint but no tan- u 
gential constraint ,,; Same 

(similar to Case 3, TX=0 
with v # 0) 

Case 
No. Description 

Boundary 
Conditions 

x=0 x= a/a 

6 

7 

8 

9 

10 

Clamped end, with- 
out axial constraint 

Clamped end, with 
axial constraint 
(called “fixed end”) 

Clamped end, notan- W =o 

gential constraint w’ =o 

(similar to Case 6, N,=O Same 

but with v # 0) TX =0 

Clamped end, with 
axial constraint but 
no tangential con- 
straint (similar to 
Case 7, but withvf 0) 

w =o 
w’ =o 
u =o Same 

TX=0 

Simple support with- 
out axial constraint 
at one end, clamped 
with axial constraint 
at the other 

W =o 

v 0 Same = 
Mx=O w’=O 

Nx=O u=O 

w =o 
w’ =o 
V =o same 
N,=O 

W =o 

Wf =o Same 
U =o 

V =o 

5.2.4 THE TECHNIQUE OF NUMERICAL COMPUTATION. The evaluation of numer- 
ical constants a, b, c and d can be made by iteration. The solution of this problem is 
determined by: 1) a given set of fixed a/h, J/a and v ; 2) an assumed number of circum- 
ferential waves, numbers n; and 3) a specific set of boundary conditions for each end. 
The computation starts from some initial estimate for frequency, w. An iteration can 
then be performed to satisfy simultaneously Equation 3 and the determinant D of the 
boundary conditions. An entire range of problems can be covered by varying the initial 
input to the determinant, D, which are the constants a/h, A/a, V, and n - or the bound- 
ary conditions. The solution can be obtained without any problem by this method; how- 
ever, to obtain accurate values for the mode shapes, it is necessary to compute the 
frequencies to six significant figures. The numerical computation was performed on an 
IBM 7094 computer. 
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Figure 68 illustrates the coordinate sys- 
tem and sign convention applied in the theory, 
while Figure 69 shows the general character 
of the various mode shapes. The effect of 
the different edge conditions listed in Table 5 
can be seen in Figures 70 through 73. All of 
these figures contain a nondimensional fre- 
quency; the expression for the frequency 
factor, W,, can be written 

1 E 
w” = a [ 1 

l/2 

P(l - V2) 
(400) 

The “beam modes” of a cylindrical shell 
can be seen on Figures 71 and 72. Figure 73 
illustrates a peculiar frequency dip, which 
was discovered earlier by Arnold and 
Warburton. The detailed explanation of this 
phenomenon will be covered in Reference 16. 

5.2.5 CONCLUSIONS. As far as numeri- 
cal results are concerned, this paper is the 
most accurate and general to date. The dis- 
advantage of the theory is that any numerical 
computation has to be carried out by compu- 
ter, which requires the ownership of the 
computer program. 

5.3 A REVIEW OF ARNOLD AND 
WARBURTON’S PAPER: “FLEXURAL 
VIBRATIONS OF THE WALLS OF THIN 
CYLINDRICAL SHELLS HAVING FREE- 

Figure 68. Coordinate System 

LY SUPPORTED EDGES” (REFERENCE 16) 
AXL4LNODALPATTERN 

5.3.1 SUMMARY. This paper discussed FOR n - 3. m = 4 

the flexural vibration of a thin-walled cylin- 
drical shell with simply supported edge con- 
ditions. Timoshenko’s strain-displacement AXIALNODE 
relations were introduced, and the kinetic 
and potential energy of the shell were derived. 
Since suitable functions were introduced for 
the displacement functions, the energy Figure 69. Character of 

method led to Lagrange’s equation of Mode Shapes 

motion. It is worthwhile to mention that the 

118 



- AXIAL CONSTRAINT 

CONSTRALNT 

1 I 1 1 I I I \ 1, I 

0.2 0.5 1.0 2 5 10 20 50 100 

LENGTH TO RADIUS RATIO, e/a 

Figure 70. Frequency Distribution for n = 1 

u 
I? 0.01 I I I \tl 

t: -PRESENT ANALYSIS 
--APPROXIMATE SbLUTION 

tl. 005 - OF ARNOLD AND WARBURTON 
I I I 

,\LL C+JRVES ARE FOR C,\SE 7. 

0.002 

0.001 
0.2 0.5 1.0 2 G 10 20 SO 100 

LENGTH TO RADIUS RATIO, t/n 

Figure 71. Frequency Envelope, Case 7 and Arnold and 
Warburton’s Approximate Solution 
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I -SIMPLE‘SUPP~RT \‘\h. I 

3 (CASE 1) 

g o.ol -----SIMPLE’SUPPO’RT 

E 
WITHOUT AXLA L CONSTRAINT 4 
AT ONE END, AND WITH 

0.005 AXIAL CONSTRAINT AT 
THE OTHER 

((CASE ‘1 

---SIMPLE S”PPO\lT WITH !4X 
0.002 

I”““” 3, 
v=o.3. m = 1 

0.001 I 
0.2 0.5 1.0 2 5 10 20 50 100 

LENGTH TO HADIUS RATIO, i/a 

Figure 72. Frequency Envelope, Cases 1, 2, and 3 

Figure 7 ‘3. Frequency Distribution for a/a = 1 and k/a = 10 

5.0 * - 4; 1 y,” -SIMPLE SUPPORT WITHOUT AXIAL 
(RI<STRAINT (CASE 11 I I I 

” = 0.3. ---CLAMPED WITH AXIAL RESTRAINT 
1 1 1-1 _- c -- c -- 
, 1 I I I 

2 1.0 

* 
u 0.5 

2 

s 
2 0.2 
Ls 

0.1 
‘\, \“ ’ 

\ 
0.05 1 \ 

WITHOUT AXIAL 
RESTRAINT (CASE 1 

---CLAMPED WITH AX 

NUMBER OF CIRCUMFERENTIAL WAVES, n 
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displacement functions used by the authors satisfy the differential equations of motion 
“exactly, ‘l as was proved by W. Fliigge. 

The ‘Lagrange’s equations result in a sixth-order frequency .equation. Different 
numerical examples were discussed, and the theory was verified by test results. The 
authors discovered, first, a peculiar frequency dip; this phenomenon was explained 
fully by their theoretical and experimental investigations. Figure 74 shows the results. 
Figure 75 explains the frequency dip, based on the summation of bending and stretching 
energy. 

5.3.2 EXPLANATION OF THE THEORY. A plane stress-strain relation is assumed. 
Therefore, the strain energy for a unit cubic element is, according to Figure 76, 

so = $px~, + uy cy + Txy Yxy> 

Figure 74. 

12 

T 
T 
T T 
IPP 

I 

T 
!: I I 
i 
T - 

NUMBER OF CIRCUMFERENTIAL NODES, 2n 

Experimental and Theoretical Frequency Curves (a! = 0.01) 

.21 

(461) 
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w 
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IN1 

1 

/ 

/ 

4 

ERGY 

STRETCHING ENERGY 

--L-l-, 

4 12 20 28 

NUMBER OF CIRCUMFERENTIAL NODES, 2n 

Figure 75. Strain Energy Due to Bending and Stretching (u = 0.01; 
h = 0.025 in., a = 2.51 in. ; J = 2.065 in.) 
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Figure 76. Deformations 
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The strain energy of a cylindrical shell can be expressed by the volume of the shell 

Figure 77 illustrates the element of a cylindrical shell. 

Figure 77. Cylindrical Shell Element 

(402) 

The stress can be expressed 
as a function of strain 

u = E(C 
cp (1- U2) cp 

+uc,) > (403) 

% = G yxq , 

where 

GC-L 
2(1 +u) 

The substitution of Equation 403 into Equation 402 leads to 

Total strain can be expressed for any point of the shell thickness as the super- 
position of membrane and bending strain 

EX = cx m - 2x1 , 

cq = cq,, - zx2 

Yx(p = yx,Qm - 2zxxcP 1 

where subindex m = membrane. 

[41 
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In the next step Equation 4 has been expressed by Equations 397 and 399 of the 
strain-displacement functions. Equation 3 of the strain energy has now been expressed 
in terms of displacement functions. The displacement functions may be expressed in 
the case of simply supported edges 

mnx 
u = U COST cos ncp 

mlTx 
v = V sin a - sin ncp , 

mnx 
w = W sin 7 cos ncp 

/ 

[61 

where n and m are respectively the circumferential and longitudinal wave length num- 
bers and U, V and W are functions of time only. 

Equation 6 is equivalent to Equation 22 of Section 5.1. These equations satisfy the 
differential equations of equilibrium as was proved by Fliigge. Since Equation 3 was 
expressed in terms of displacements, the substitution of Equation 6 into this equation 
yields 

s= 
TEhJ 

4a(l- lJ2) 
U2X2 + (nV-W)‘+ 2vAU(W-nV) + (yj(Av-nu)2 

+” 
12a2 [ A4W2 + (nV - n2W)2 + 2VX2W(I12W - nV) 

+ 2(1 - v)(XV - XnW)2 
11 

where 

The kinetic energy at any instant is given by 

where the specific weight, y = [lb/in.31, or 

c71 

t-81 

T = ynh Aa -2 4g [u +v2+w21 
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Since U, V and W are independent variables, to minimize the kinetic and potential 
energy, Lagrange’s equation is applicable. The Lagrange equation is in general 

where 

qi = generalized coordinates 

E = total energy 

Qi = external forces 

In the present case these quantities become 

q1 = u 92 =v 93 = w 

41 =* 62 =lj 93 * =w 

E=T-S and Qi = 0 

The substitution of Equation 405 into Equation 404 leads to 

t91 

(405) 

Two similar equations can be written in V and W. 

The substitution of Equations 7 and 8 into Equation 9 leads to 

YryhJa.* -u-o= - 7rEha 
2g 2 a(1 - V2) 

-n q(xV-nU) 1 Cl01 

U, V and W are periodic with respect to time and may be written 

u= A cos ot V = B cos wt w = c co9 wt Cl11 

where A, B and C are constants and 0 is the angular natural frequency of the vibration. 
The substitution of Equation 11 into Equation 10 yields 

(l-') 2-~ - 2n 1 A - FXnB + VAC = 0 Cl21 

where 
~= Ya2 (1 - V2)W2 

Eg (406) 
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Similarly, by substituting in the Lagrange equations for V and W 

- y XnA + ( 1 /(9)X2 + n2 -A +BCn2+ 2(1 - v)X 2 1 1,~ 

- tn+/3Cn3+(2-V)X2nl C = 0 
1 Cl31 

and 

vXA - n+ BCn3+ (2 - 2 I V)x nil B + cl -A + fl(x2 +n2)2]C = 0 t-141 

where 

fl = h2/12a2 

Eliminating A, B and C from Equations 12 to 14 leads to a cubic equation in A 

A3 -K2A2+KlA-Kg= 0 Cl51 

where 
+ a2(l - V2) cd2 

A= 
Eg 

and 

w = angular frequency 

KO = +(l - V)2(1 + V)A4 +$(1 - v) X fl[(X2 + n2)4 - 2(4 - V2) A4n2 

- 8A2n4 - 2n6 + 4(1- V2)A4 + 4X2n2 + n41 

K1 = i(1-v)(A2+n2)2 ++(3-v-2$)x2 +t(l- v)n2 

+ fl +(3-V)(X2+n2)3 + 2(1-v)A4 
[ 

- (2 - V2)X2n2 -+(3+V)n4 + 2(1-V)A2+n2 1 
and 

K2 = 1 + +(3 - V)(A2 + n2) + BC(X2 + n2)2 + 2(1 - V)X2 + n21 

It can be seen that Equation 15 is sixth-order in 0. 

5.3.3 STRAIN ENERGY DUE TO BENDING AND STRETCHING OF A CYLINDRICAL 
SHELL. The substitution of Equation 11 into Equation 7 gives the maximum strain 
energy in terms of the component amplitudes. 
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S BEhJ 
max= 4a(l - V2) 

A2X2 + (C - nB)2 + BuXA(C - nB) 

+ ( qj (XB - nA)2 + fl [x4C2 + (n2C - nB)2 

+ 2vX2C(n2C - nB) + 2(1 - u)(AB - XnC)21/ cl61 

The first four terms give the strain energy due to stretching, and the remainder that 
due to bending. 

By the elimination of the amplitude ratios between Equations 12, 13 and 14 and the 
use of expression A/C and B/C, an expression for stretching energy and one for 
bending energy are obtained. 

The stretching energy can be stated as 

The bending energy can be written 

- 2[(2 - v)X2n + n”](g)} 

Cl91 

c201 

Equations 19 and 20 can be rewritten in the form 

‘s = %[4(1E_n~$‘c2 and ‘% = ‘b[4(lE-rV2)]eC2 c211 

where ‘rJs and 713 are nondimensional energy factors for stretching and bending 
respectively. 
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Figure 78 shows the orientation of the coordinate system and the nodal pattern of 
the cylindrical shells. 

CIRCUMFERENTIAL VIBRATION FORMS 

n=2 n=3 n= 4 
AXIAL VIBRATION FORMS 

NODA 
n= 

L 
3; 

AR 
m 

CIRCUMFERENTIAL 

Figure 78. Orientation and Nodal Pattern of Cylindrical Shells 

It can be seen that the minimum frequency coincides with the minimum strain energy 
and that the lowest frequency has not occurred at the lowest circumferential wave num- 
ber. The effect of different thicknesses-over-mean-radius ratios, a, can be seen on 
Figure 79. The general arrangement of the vibration test can be seen on Figure 80. 

6.3.4 CONCLUSIONS. The paper described the applied energy method of determining 
the vibrations of cylindrical shells; by a suitable choice of displacement functions, the 
problem of free vibration was reduced to Legendre’s equations via a sixth-order fre- 
quency equation. The authors are the discoverers of the peculiar frequency dip, which 
was explained fully and also verified by their test results. In general, their theory 
shows good agreement with the test results. The theory cannot be expanded for 
arbitrary edge conditions, which is the limitation of this theory. 
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a. a -0.002 
b. a = 0.0525 

Figure 79. 
rnna 

Effect of Thickness on Radius Ratio, x = 7 

\ FROM EARPHONE 

END-& CE /’ 

Figure 80. Experiment Arrangement 
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G/THEORY OF ORTHOTROPIC SHELLS 

Our theoretical investigation was restricted to isotropic shells. However, many of the 
practical structurea have rings and longitudinal stiffeners or are of honeycomb con- 
struction. Another type of shell structure can be built from plywood. It is obvious 
that the stretching and bending effects are different in different directions for these 
structures, Several theories were developed, and the present discussion will be re- 
stricted to two of them. One of them was developed by Fliigge, which was based on 
theoretical consideratlons only; and the other theory, by Hoppmann, was based on test 
results, The equivalence of the two theories will be discussed. 

6.1 THEORY OF W. FLiiGGE 

A plate with uniform thickness but with different stiffness characteristics is considered 
first. Figure 81 shows the general arrangement and El and E2 represent the different 
moduli of elasticity, 

2 

Figure 81. General Arrangement of Plate 

In the isotropic case the forces can be expressed, based on Equation 386, as 

N, = he, + UE -----hhq 
(1 - U2) 

The last equation may be expressed in the form 

NX 
= Dxex + D&, (468) 

A similar equation can be written for force NV 

(469) 
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The comparison of Equations 407 and 408 leads to the following relations 

DX 
= Elh % = Euh Furthermore D(P = E2h 

where 

E 
El = E2 = 

(1 - 9) 
and 

UE 
Eu = 

(1 - $1 

Based on Equation 388 the bending moments may be expressed as 

M, = 
Eh3 

12(1 - u 
2 (“x+W$ = EIIx,+EuI’fq 

) 

where 

h3 
I =z 

Equation 412 can be written, as in the previous case 

s = %Xx + w-q 

The comparison of Equations 412 and 413 leads again to 

K, = IE1 and Ku = IEu 

(416) 

(411) 

(412) 

(413) 

(414) 

In the present case, one has El = E2. 

6.1.1 ORTHOTROPIC PLATE. The plate is usually called “orthotropic” when the 
material of the plate has three planes of symmetry with respect to its elastic properties. 
The plate has different moduli of elasticity in the different directions; in other words the 
strength of the plate has been varied in the different directions. In the orthotropic case, 
the former equations can be written considering the different moduli of elasticity El 
and E2. The forces in this case are 

NX 
= P,C, + P& 9 

Nq 
= P& +DucX and NW = Dx(PY~~ (415) 

where 

DX = Elh, L-+,, = E2h and % = E,h 

and 

Bl f E2 
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The moment may be expressed as 

%=K, xx + KuxV, % = Icp)$+ l$,~x and Mxq = Kx(p”x(p (416) 

where 

K, = IE1, q = IE2 and KU = IEu 

and 

El f E2 

In the calculations of constants D, and Ku, it is recommended that the average values 
be used. The calculations of the orthotropic coefficients will be discussed in three 
configurations. 

6.1.2 PLYWOOD SHELL. Figure 82 illustrates a panel of a plywood shell. The 
first numbers of subindex E have been designated for the part of the plywood shell and 
the second numbers for the directions. The orthotropic constants were calculated, 
based on the previous considerations by Equation 417. 

Figure 82. Plywood Shell 
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Dx = Elltl + 2E21t2 Dv = E12tl +- 2E22t2 

1 
DU = E,t DX(P = Gt 

I& = ; [El1 tl” + E21 (t3 - t;)] etc. 

(417) 

6.1.3 CYLINDRICAL SHELLS WITH RINGS AND STRINGERS. Figure 83 shows a 
portion of the cylindrical shell with rings and Figure 84 illustrates the portion of the 
shell with longitudinal stringers. The orthotropic constant D, associated with stretch- 
ing of the middle surface may be calculated by adding the stretching effect of the stringer 
to the shell constant for a constant-thickness shell. The effect of the stringer can be 
expressed by an additional imaginary shell thickness, ha,. The calculation can be seen 
by Equation 418. 

DX = Elh + Eh,, = 
Eh AX 

(1 - U2) 
+ E- 

b2 
(418) 

The orthotropic constant Kx associated with bending may be derived again by adding 
the bending effect of the stringer to the shell constant associated with constant thick- 
ness. Equations 412 and 414 expressed the basic concept; however, the moment of 
inertia of the stringer has to be divided by the spacing distance, bg, since the moment 
of inertia of the shell with constant shell thickness was computed for a unit wide strip. 

K, = E1 I + E(lstr;nger) = Eh3 + E(Ix + A, cx2) 

12(1 - U2) b2 
(419) 

Figure 83. Cylindrical Shell with Rings 
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Figure 84. Shell with Longitudinal Stringers 

The rest of the constants are given by Equation 420. 

Dq = 
Eh Av 

(1 - U2) 
+ E-, 

bl 
DU 

Eh 
= u 

(1 - U2) 

D W = Gh 

(420) 

where the moments of inertia, <and I$@, represent the twisting of the stringers or the 
rings. The details of this theory can be found in Reference 6 , page 293-307. 
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Fliigge’s orthotropic shell approximation and shell equations have the advantage of 
simplicity; and they are useful when there are no test results. It is obvious that this 
theory can be only approximate, since it does not take into account any stress concen- 
trations and local deformations. 

6.2 A REVIEW OF HOPPMANN’S PAPER: “ELASTIC COMPLIANCES OF 
ORTHOGONALLY STIFFENED PLATES” (REFERENCE 17) 

6.2.1 SUMMARY. Hoppmarm proposed an experimental evaluation of the orthotropic 
constants and described the test procedure. The essence of his theory can be 
summarized as follows. 

The tests apply to a panel of a shell or a plate and define the elastic constants. This 
theory considers eight elastic constants. The elastic constants associated with stretch- 
ing effects (membrane stress) can be expressed as Cll, Cl2 and C22. The shear con- 
stant is expressed as C66. These constants are associated with an equivalent shell or 
plate thickness of h,. 

The bending effects can be expressed by the following constants: Sll, S12 and S22. 
The twisting effect is represented by the constant, S66. 

This second group of constants has another equivalent shell or plate thickness of hb. 
Figure 85 shows a portion of a stiffened plate. Figure 86 illustrates the schematic dia- 
gram of bending and twisting. The schematic diagram of shear and tensile loadings are 
seen on Figure 87. The schematic of the foil-type displacement meter is shown in 

A 

t 

1 

0.275 
t 

Y 
f A 

0.625 -$---( -j j-o.125 * 

+- 
SECTION A-A 0.065 

Figure 85. Details of Experimental Plates with Integral Stiffeners (Dimensions in Inches) 
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Figure 86. 

a. BENDING 

b. TWISTING 

Diagrammatic Arrangement for Bending and Twisting Tests 

---A- 
l 

v----c 

a. SHEAR STRESS 

A lu-l 

b. TENSILE STRESS (STRETCH) 

F’igure 87. Diagrammatic Arrangement Showing Shear and Tensile Loading 
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Figure 88. The paper presents photographs of the equipment for the bending and twist- 
ing tests; furthermore, the equipment for the tensile and shear tests is also shown. 
The results of the tests are tabulated in Tables 6 and 7. 

CLAMPED 

I I I\ SR-4 STRAIN GAGE I 
12 IN. C 

APPROX. 

I 

11 

R 

1 IN. 

CLAMPED 

EMENTED TO FOIL 

0.005 IN. THICK 
ALUMINUM FOIL 

NO. 2 

Figure 88. Schematic Diagram of Foil-Type Displacement Meter 

Table 6. Orthotropic Elastic Constants (Bending and Twisting) 

% x 1o6 t?? x 1o6 f?! x 1o6 5 x 1o6 s66 - x 106 
Plate hb3 hb3 hb3 hb3 hb3 

A 364 -127 -127 364 983 

B 13.0 +1.4 -18.1 306 370 

C 4.8 -1.7 -1.7 4.8 13 

In the theory Sij = Sji, so in practical application an average of S12 and S21 is used. 
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Table 7. Orthotropic Elastic Constants (Stretching and Shearing 
in Plane of Middle Surface) .__I-- 

rT 
-.~ _~ 

Cl1 c12 

h, 
x106 - 

hs 
x 106 

I 

C21 C22 -i;--x106 - 
hS 

x 106 C66 

Plate S 
h x lo6 

S 

A 

L 

1.54 -0.54 -0.54 1.54 4.16 

B 0. 83 -0.29 -0.13 1.40 2.11 

C 0.36 -0.12 -0.12 0.36 0.98 
__,_ - .__- --~~ ~ _...... I i,. . . ~_ ., . -_ 

In the theory Cij = Cji, so in practical application an average of Cl2 and C21 is used. 

6.2.2 F:XPLANATION OF THE THEORY AND TI.:ST RF:SULTS. The membrane 
stresses (stretching and shearing effects) can bc written according to the paper 

c; = ciju; (421) 

where 

(i,j = 1,2) 

y” = C66T” (422) 

The dummy index j means summation according to tensorial notation, and the double 
primes symbolize the membrane stresses and strains. Equation 421 can be written 

2 
N <. = 1 'ij"i = CCijCJj 

i=l 

Equation 423 is, in terms of the components 

c; = clp; + C12$ 

6; = c2p; + cz2u; 

(423) 

(424) 

The stresses can be expressed from Equations 422 and 424 

0; = & ($2 c; - Cl2 $4 3 a; = & (Cl1 6; - 31 c;, 

(425) 
YIJ 7” = - 

C66 
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where 

cl1 cl:! 
c* = 

c21 c22 

The bending stresses (bending and twisting effects) may be written 

fi’ =- s..o! 
1J J 

where 

(i,j = 1,2) 

y’ = SS6T’ 

(426) 

(427) 

(428) 

The dummy index j means again the summation by tensorial notation, and the single 
primes symbolize the bending stresses and strains. Equation 427 can be expressed 

2 
F; = siju; = c siju; 

i=l 

The stresses were expressed in the terms of strains from Equation 429 

u; = &(S22E; - 312 G) 

4 = $*(Sll c; - 321 G) 1 

where 

311 s12 
S’ = 

s21 s22 

(429) 

(436) 

(431) 

The shear stress is expressed, from Equation 428 as 

Y’ 7’ = - 
s66 

(432) 

The membrane forces may be written by the introduction of an equivalent membrane 
thiclmess of the shell, h,. 
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N = O;h, 

Nij = rN h, 

where (i, j = 1, 2). 

(433) 

The bending and twisting moments can be expressed similarly by the introduction of 
the equivalent bending shell thickness, hb. 

hb3 Mi = o! - 
1 12 

I hb3 Mij = T 12 

(434) 

The isotropic constants are a special case of the orthotropic constants. The iso- 
tropic constants may be calculated by the comparison of Equations 433 and 386 and of 
Equations 388 and 434. 

Cl1 
1 = c22 = Sll = s2.J = E 

c* = s* = (1 - U2) 

E2 

Cl2 
V 

= c21 = 552 = srJ1 = -y 

C66 
1 2(1 + V) =2S66=G= E 

and 

h, = hb = h, = h 

(435) 

Figure 89 illustrates the direction of the elastic constants relative to the plate 
stiffeners, The results of bending and twisting tests can be seen in Table 6. Table ‘7 
demonstrates the results of the stretching and shearing tests. In these tables the plate 
A has a constant plate thiclmess, 0.065 inch, and plate C has a thickness of 0.275 inch. 
Plate B is the stiffened (orthotropic) plate; the elastic properties of plate B can be 
found between plate A and C. 

6.2.3 CONCLUSIONS. The paper has demonstrated a practical method to measure 
the elastic compliances of a stiffened plate. The measurement can b e extended for a 
panel of a shell, and the stiffeners of the shell panel can be in both perpendicular direc- 
tions. This technique can also be useful to determine the elastic compliances of 
honeycomb structures, 
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- 
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I 

s c 
t 22 22 

Figure 89. Direction of Constants 

6.3 TRANSFORMATION OF HOPPMANN’S EXPERIMENTAL CONSTANTS TO 
FLijGGE’S THEORETICAL CONSTANTS 

The orthotropic elastic constants are necessary to solve for the frequency and mode 
shapes of a particular shell. The accurate method of obtaining these coefficients is by 
experiment. However, experimental results are not always available, and this is the 
reason for discussing Fhigge’s theoretical method. If a shell theory is formulated in 
terms of orthotropic constants using one of the methods, many times it is desirable to 
transfer the theory in terms of the other type of orthotropic constants. 

Let us assume that the forces and moments were expressed by Fbiigge’s method 
according to Equations 415, 416, 418, 419 and 420. 

NX = Dxex + D&, (436) 
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These forces and moments can be expressed, according to Hoppmann’s theory, as 

h,/2 
N, = / 

o;dz = hS 
c* (C22 <x - Cl2 sp) (438) 

-h,h 

. 

BZ, I -/;;i; zdz = - -[;;& @22x, - S12”(p) a2 ds 

b b 

Since the bending strains, c;, were expressed as the function of curvature, accord- 
ing to Equation 4 of Reference IS, 

c; = -2x1 and c; = -2x2 

and 

%= 
hi 

- iTj-$i @22% - S12 Xv) 

A comparison of Equations 436 and 438 leads to 

D, = 
cl2 hs h&11 -- 

c* and Dq = - 
C* 

A comparison of Equations 437 and 440 starts with the considerations of 
sign conventions by Fliigge and Timoshenko. 

3 
hb s22 

JG=- 12 s* 

3 3 

K, = 
hb s12 hs %1 

-- and = 12 s* Kq 12 s* 

Determinant 426 can be expressed by the use of Equation 441. 

c* = (Cl1 c22 - cl;) = 
( 1 
F 2[Dx~q - $1 s 

Equation 443 can be expressed as 

hS (DxDp - D;) 
-= 
c* hS 

(43% 

(440) 

(441) 

the opposite 

(442) 

(443) 

(444) 
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The substitution of Equation 444 into Equation 441 leads to 

D _ C,z(DxD@ $3 
X- 

hS 

Equation 445 is, in the final form, 

106 c22 lo6 Dx 

h, = Cs,Dq - $1 

lo6 s22 

hb3 

lo6 Kx 

- Kv2) 
etc. 

(445) 

(446) 

For demonstration of the theory, FRigge’s theoretical method will be used to com- 
pute the orthotropic constants. Table 8 shows the computed values and the test results 
of the orthotropic constants for a longitudinally stiffened cylindrical shell according to 
Reference 18. 

Table 8. Computed and Experimental Orthotropic Constants -~ 
Configuration Analytical Experimental 

106 c22 

hS 

1.47 1.40 

106 C66 

hS 
4.14 2.11 

106 ($1 

hS 
1.00 0.83 

106 Cl2 

hS 

-0.344 -0.21 

106 s22 

hb3 

106S11 

hb3 

322.0 306.0 

10.27 13.0 

106 s12 

hb3 
-3.60 -8.30 

106 S66 

hb3 
490.0 370.0 

-__~~. .- ~~~-- 
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The values in Table 9 were then used to calculate the model frequencies according 
to Hoppmann’s equations for a longitudinal stiffened shell. (gee Reference 18. ) Table 6 
shows the results with the different wave numbers for the analytical case using both the 
test coefficients and the analytical (Fliigge) coefficients. Also shown are the frequencies 
obtained experimentally for the same shell. The modes for n = 2 and m = 2, 3, 4 and 5 
could not be excited. This table shows that in some cases the error between the com- 
pletely analytical and test cases can be as much as 41 percent; however, for the lower 
longitudinal wave numbers (m) the error is reasonable. 

Table 9. Model Frequencies 

1 2 3 4 5 6 
Test Calculated 

Constants Constants % Diff Test % Error 
m n Freq (Hz) Freq (Hz) 2/3 - 1.00 Frequencies 5/3 - 1.00 

. 

1 2 

3 

4 

5 

2 2 

3 

4 

5 

3 2 

3 

4 

5 

4 2 

3 

4 

5 

5 2 

3 

4 

5 

750 

1150 

2100 

3340 

2300 

1700 

2350 

3510 

4200 

2870 

2970 

3900 

6100 

4360 

3960 

4620 

7900 

5900 

5100 

5600 

694 8 

1135 1 

2111 -0.5 

3402 -2 

2020 14 

1577 8 

2254 4 

3472 1 

3716 13 

2574 11 

2727 9 

3719 5 

5466 11 

3897 12 

3600 10 

4261 8.5 

7186 10 

5405 9 

4809 6 

5154 9 

700 1 

1270 12 

2200 -4 

3460 -1 

- 

1830 

2600 

4080 

- 

2640 

3360 

4120 

2 

23 

11 

- 

5490 

4100 

5130 

41 

14 

20 

6100 13 

5200 8 

6100 18 

16 

10 

18 
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6.4 A REVIEW OF HOPPM&NN’S PAPER. l “SOME CHARACTERISTICS OF THE 
FLEXURAL VIBRATIONS OF ORTHOGONALLY STIFFENED CYLINDRICAL 
SHELLS” (REFERENCE 18) 

6.4.1 SUMMARY. The flexural vibrations of stiffened cylindrical shells were studied 
by theory and experiments. The theory utilized the experimental determination of the 
orthotropic constants developed previously by the author. (See Reference 17. ) Three 
different configurations were studied theoretically and experimentally; one of these had 
equally spaced longitudinal stiffeners, the second had rings again equally spaced, and 
the third configuration was without any stiffeners (isotropic case). The theory is based 
on the orthotropic stress-strain relations developed previously in Reference 17. The 
strain energy expression of the shell was formulated in terms of experimentally 
determined orthotropic constants. 

The effective shell thiclmess, h,, associated with stretching and shearing of the 
middle surface and another shell thiclmess, hb, associated with bending and twisting 
have been utilized in the development of the stress-displacement relations. The kinetic 
energy of the shell was expressed with the aid of the equivalent shell thickness, h,. 
The theory has discussed the case of simply supported edges, and a suitable chosen 
displacement function reduced the energy expression to the Lagrange equation of motion. 
In other words, the energy expression was minimized by the use of the proper displace- 
ment functions and the application of the Lagrange equations of motion. The theory 
obtained a sixth-order frequency equation. The frequencies of the previously mentioned 
three different shell configurations were computed. All of the cylindrical shells were 
constructed with aluminum. Flexural vibrations were excited by an electromagnet, and 
the magnet was excited from an audio-oscillator which fed through a resonant-type RC 
circuit to increase the driving force. A specially designed pickup was used to deter- 
mine the mode shapes, and the frequencies were also checked by means of a small 
crystal-type pickup. The results of the theoretical and experimental investigations of 
the frequencies were tabulated in the paper, and they are in fairly good agreement. 

6.4.2 EXPLANATION OF THE THEORY, TEST APPARATUS AND THE TEST 
RESULTS. The elastic constants associated with bending and twisting can be expressed 
as 

Ff = siju; 
Cl1 

y I = SS6T’ (i, j sum over 1,2) 

The orthotropic stress-strain equations can be expressed by the elastic orthotropic 
constants, which are associated with stretching and shearing. 

Czl 
c; = s.. 0:’ 

1J J 

y" = Css? (i, j sum over 1, 2) I 
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II 

Equations 1 and 2 were explained by Equations 421 through 434. The elastic con- 
stants Sij and Cij, determined from experiments, were fully discussed in Reference 17. 
The orthotropic elastic constants used in this paper are shown in Equation 3. 

Sll - X lo6 = 306 
hb3 

S22 - x 106 = 13 
hb3 

Cl1 h x 106 = 1.4 
S 

c22 - x lo6 
hs 

= 0.83 

s12 x 106 Sal x 106 
= = 

hb3 hb3 
-8.3 

I 

sss x 106 = 370 
hb3 I c31 
Cl2 x 106 c21 x 106 

hs = hs = -Os21 

z!!f x 106 = 2.11 
hS 

Units are inches and pounds. 

The strain energy of a thin shell may be written 

(cl El + a2c2 + Ty) dV 
V 

where d V is an element of volume. 0 and 7 are stresses, while c and Y are strains. 
Equation 4 is equivalent to Equations 402 and 403. The stresses may be expressed in 
the form 

Ol = 0; + 0; 

u2 = 0; + a; 
I 

c51 
7 = Tf + Tf' 

Equation 5 expresses the superposition of membrane and bending stresses. The expla- 
nation of Equation 5 can also be found in Equation 4 of Reference 16. 

The strain energy in terms of orthotropic constants can be obtained by the substitu- 
tion of Equations 1, 2, and 5 into Equation 4. 

s = 
hS 2c* / (-Cam ci2 - Cl1 ei2 + 2C12 ci $)ad@dx 

A 
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hb3 +-- 24 S* J (452 Xl2 - Sllx22 + 2S12n1n2)ad@dx 
A 

hb3 yti2ad#dx + - J 6S66~ 
Yr2ad9dx c61 

where 

a is the mean radius of the shell 

4 is the angular location in a transverse section of the cylinder 

x is the coordinate measured along the cylinder 

In the expression of Equation 5, the terms associated with bending and twisting were 
integrated between f(hb/2) and the terms associated with stretching and shearing were 
integrated between f&/2). 

The strain displacement relations can be expressed according to Equations 387 and 
389. 

au 6; = ax i av 
C; =---$-" 

( ) 

c71 
a2, 

n1 = a,2 x2 = g$+%, n12=i &)+$ 
( ,1 

The substitution of Equation 7 into Equation 6 leads to a strain energy expression which 
consists of the displacements, elastic constants Cij and Sij, and the thicknesses, h, 
and hb. The fictitious thiclmesses h, and hb.are canceled from Equation 6 by the sub- 
stitution of the numerical values of Expression 3 into Equation 6. Therefore, the strain 
energy is really independent of the thiclmesses h, and hb. 

The kinetic energy of the shell may be written in the following manner. 

T = ;J[l[($)2 + ($)z + ($)2]dv L-91 

Equation 9 is equivalent to Equation 8 of Reference 16. Jf the integration is made 
through a mean thickness of the stiffened shell, then the volume integral is simply a 
surface integral to be integrated over the middle surface. The thickness of a stiffened 
shell may be designated to represent a mean thickness. The total mass can be written 
as 2ra kph,. The radius of middle surface is a, the length of the shell is a, and 
the mean density of the shell is p. After the above integration has been performed, 
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It is obvious that ph, can be determined readily by dividing the total mass of the 
shell by 2ra R, In the case of simply supported edges, the frequency equation can be 
derived with the aid of Lagrangian equations of motion. A further explanation can be 
found in Reference 16 of Equations 404, 405 and 4. For free vibrations they may be 
written 

0 where i = 1,2,3 L-111 

Equation 11 can be also found in Reference 16 as Equation 9. The expressions for S 
and T have been derived and are given as Equations 6 and 10. The generalized coor- 
dinates, qi, can be expressed according to Equation 405. The displacement functions 
can be expressed according to Equations 6 and 11 of Reference 16. 

u = Acosn@cos (y) cos wt 

v = Bsinn@sin(y)cos Ot 

w = Ccos no sin (y) cos ot 
1 

Cl21 

where m and n are integers. 

The corresponding half longitudinal wave numbers are designated by numbers m, 
and the circumferential wave numbers are designated by numbers n. A, B, C are con- 
stants and o is the angular frequency of vibration. The displacement functions satisfy 
the boundary conditions, since 

W =v=(J M, = 0 at x = 0 and x = k Cl31 

Applying the Lagrangian equation to the expressions of the strain and kinetic ener- 
gies, in exactly the same way as was explained by Equations 404, 406 and 9 through 11 
of Reference 16, the Lagrangian Equations 11 becomes three homogeneous equations in 
the constants A, B and C . 

(Xl1 -A)A+X12B+X13C = 0 

X2lA + (X22 - A)B + h23C = 0 

t 

El4 1 
X3, A + X32 B + (X33 - A) C = 0 
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where 

A= phmd 

and ph, is the mass per unit area of the middle surface of the shell. The Xij, given in 
terms of known quantities, are as follows. 

x11 = (n2 hs/a2 C66) - C22 (~2 h,/C*) 

x22 = (-hs Cl1 n2/a2 C*) - (lib3 Sll n2/12 S*a4) 

+ (hscY2/C66) + @lb3 02/3 s 66a2) 

x33 = (-hs Cll/C* a2) - (hb3 522 a4/12 S*) - (hb3 Sll n4/12 S* a4 

+ (hb3 a2n2 S12 /6 S* a2) + (hz/3) (n2 a2/S66 a2) 

x 12 = - C@C12nh,/aC*) + (n”hs/aC66)1 

xl3 = (h,aC&a C*) 

Cl51 

l23 = (hsClln/a2C*) + (hb3S11n3/12S*a4) 

- (hb3 n o2 S12/12 S* a2) - (hb3 n 02/3 S66 a2) 

where Xij = X ji and Q = (m n/a). 

The non-trivial solution of determinant 14 yields 

A3 - K;A2 + K;A - K;) = 0 

where 

K; = $1 + x22 + x33 
2 

K; = -x122 - xl2 - x,32 + x,1x22 + ',lx33 + x22x33 

and 9 9 3 
K;) = A,, x22x33 - x,1 x23- - x22 A13y - x33x12n + 2xl2 x23 x31 

[161 

It can be seen that Equation 16 is sixth-order in w. The three roots of frequency 
Equation 16 represent longitudinal, shear, and flexural vibrations. The flexural 
vibrations will be investigated in the following paragraphs. 
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6.4.2.1 Vibration Experiments and Results. All of the shells were constructed with ~ --___ 
aluminum. The vibration experiments were performed on three types of shells as 
shown in Figure 90. Figure 91 presents a general idea of the dimensions of the models. 

UNSTIFFENED 
CYLINDER 

TRANSVERSE 
STIFFENERS 

n LONGITUDINAL 
STIFFENERS 

Figure SO. Experimental Cylindrical 
Shells 

The paper gives a detailed description of 
the test apparatus. Flexural vibrations 
were excited by an electromagnet, for 
which it was necessary to cement a small 
piece of iron to the surface of the shell. 
The magnet is mounted on a horizontal 
track and its position is adjustable. The 
magnet is excited from an audio-oscillator 
which feeds through a resonant-type RC 
circuit to increase the driving force. To 
associate the frequency with the appropri- 
ate mode shape, a capacitive pickup was 
constructed and used. The electrical out- 
put from the pickup is fed through a pre- 
amplifier and into the screen of an 
oscilloscope. The frequencies were also 
checked by a small crystal-type pickup. 
The calculated frequencies of the flexural 
vibrations, along with the experimentally 
determined frequencies, are shown in 
Tables 10 and 11. 

Table 12 shows the computed frequencies 
of the isotropic case along with the experi- 
mental results. The frequencies of the iso- 
tropic case can be obtained by substitution 
of Equation 435 (isotropic constants) into 
Equations 15 and 16 of the reference paper. 
For all three tables the upper figure in each 

0.125 
I I- I I 

Figure 91. Dimensions of the Experimental Model 
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Table 10. Frequency of Flexural Vibration of Cylinder With Parallel Ring Stiffeners (Hz) 

1 2 

2 
1530 2100 

1530 2040 

3 
4230 4320 

4080 4090 

4 
8100 8100 

5 13,050 13,100 

Note: Upper figure in each box is calculated frequency. (Also Tables 8,9) 
Lower figure in each box is experimental frequency. (Also Tables 8,9) 

Table 11. Frequency of Flexural Vibration of Cylinder With 
Parallel Longitudinal Stiffeners (Hz) 

1 2 3 4 5 

2 750 2300 4200 6100 7900 
700 

3 1150 1700 2870 4360 5900 
1270 1830 2640 5490 6100 

4 2100 2350 2970 3960 5106 
2200 2600 3360 4100 5200 

5 
3340 3510 3900 

3460 4080 4120 51304620 j 6lOC?o] 

Table 12. Frequency of Flexural Vibration of Cylindrical Shell of 
Constant Thickness Without Stiffeners (Hz) 
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box is the calculated frequency, and the lower figure in each box is the experimental 
frequency. The maximum discrepancies are approximately 10 percent for the unstif- 
fened shell, 20 percent for the shell with longitudinal stiffeners, and 18 percent for 
the shell with circular stiffeners. Furthermore, except for very few cases, the 
discrepancies are less than 5 percent. 

Reference 16 discussed an interesting phenomenon - that in a certain range the 
more complex modal patterns were associated with lower frequencies of vibration. This 
phenomenon has recently been called the Arnold-Warburton effect and was also dis- 
covered in the orthotropic case by Hoppmann. 

Specifically, it may be noted that in Table 7 for m/n given by 5/2, the frequency is 
6200 Hz, whereas for m/n given by 5/3 the frequency is only 5700 Hz. This effect is 
also verified by the corresponding calculated frequencies as 6480 Hz versus 5760 Hz. 
Similar effects can also be noted in Table 8. It is also interesting to discuss the 
excitability of modes of vibration. For the shell without stiffeners the experimentally 
determined frequencies can be excited for all sets of values m/n. Those few frequen- 
cies missing from Table 9 are omitted simply because they were not tried. In Table 7, 
however, frequencies could not be excited for increasing n; while, as shown in Table 8, 
the frequencies could not be excited for increasing m. This phenomenon may be 
explained by a possible bias in the excitability of the modes of vibration for such 
stiffened shells. 

6.4.3 CONCLUSIONS. The paper presents an interesting comparison between theory 
and test results. Professor Hoppmann was able to show the Arnold-Warburton effect 
in the orthotropic case and a bias of the excitability of the modes of vibration for such 
shells. 

The disadvantage of the theory can be seen in the applicability of other types of edge 
conditions. 

6.5 A REVIEW OF PENZES’ PAPER: “THE EFFECT OF BOUNDARY CONDITIONS ON 
FLEXURAL VIBRATIONS OF THIN ORTHOGONALLY STIFFENED CYLINDRICAL 
SHELLS” (REFERENCE 19) 

6.5.1 SUMMARY. The paper presents a theoretical study of the flexural vibration of 
orthogonally stiffened thin cylindrical shells with the following edge conditions: 

a. Both edges clamped. 

b. One edge clamped and the other simply supported. 

C. Both edges simply supported. 

W. H. Hoppmann II published a paper in 1958 entitled “Some Characteristics of the 
Flexural Vibrations of Orthogonally Stiffened Cylindrical Shells” (Reference 18). His 
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paper treated the problem of simply supported edge conditions. The present work 
generalizes this problem for the edge conditions mentioned above. 

Hoppmann’s orthotropic-shell theory was used to derive the orthotropic stress- 
strain law in the author’s paper (References 17 and 18). However, the derivation of 
the frequency equations is different. Hoppmann’s approach was to use an energy 
method (i. e. , Lagrangian equations of motion) to derive the frequency equations. The 
author derived the equations of motion of the orthotropic cylindrical shell by the equili- 
brium conditions of the shell element. These three differential equations reduced in 
the isotropic case to the Donnell type of differential equations. 

The three differential equations were rearranged in a manner similar to that for the 
isotropic case (Reference 14), and the combinations of these equations uncoupled the 
equations. The longitudinal displacement, u, and the tangential displacement, v, were 
expressed in terms of the normal displacement, w, by two differential equations. A 
third differential equation was also derived in terms of normal displacement, w. 

The general solution was obtained which satisfies these differential equations and 
contains the undetermined characteristic value, Xi. The substitution of the general 
solution in the differential equations leads to three homogeneous equations which are 
eighth-order in the characteristic value of Xi. After some simplifications the equations 
were reduced to a fourth-order system in Xi. This set of equations, coupled with the 
boundary conditions, is sufficient to determine the characteristic frequencies and mode 
shapes of the system. 

A comparison of Hoppmann’s theory and test results with the theory presented here, 
for the case of both edges simply supported, shows approximately the same degree of 
error. Test results for other edge conditions are nonexistent. 

The edge conditions have a significant effect on the modal characteristics of a cylin- 
der with strong longitudinal stiffeners, but the effect is relatively small for cylinders 
with transverse stiffeners. 

The computations showed that the cylinder with longitudinal stiffeners in a clamped- 
simply supported edge condition, compared with both edges simply supported, showed 
a frequency increase of 37 percent for the lowest mode and that the percentage differ- 
ence gradually decreased for the higher modes. A comparison of the clamped-clamped 
edge condition and the both-edges-simply-supported condition showed a frequency 
increase of 89 percent for the lowest mode and that the percentage difference again 
gradually decreased with the higher modes. 

The peculiar dip in the frequency spectrum, which was discovered by Arnold and 
Warburton for isotropic shells, is also shown to exist with different edge conditions for 
stiffened shells (Reference 16). 
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6.5.2 EXPLANATIONS OF THE THEORY AND TEST RESULTS. Hoppmann’s ortho- 
tropic stress-strain laws were utilized in the derivations, and his nomenclature and 
notation were also used (Reference 18). The differential equations of motion were for- 
mulated for the shell element on the basis of Bonnellts assumptions. The detailed 
derivation of Equations 1, 2 and 3 of this paper can be performed based on Equations 
421 through 434 and Equations 387 and 389 of this monograph. The rearrangement and 
combination of these equations led to uncoupling them, as done in the isotropic case 
(Reference 14, Equations 6, 7 and 9). 

c12 a3w L4(u) + - - cl1 a3, A a2 c12 c66 aw 
a ax3 

+ - - = - - 
a3 axa@ C* at2 

- --g- ax 1 [II 

L4(v) - 
(c66+c12) a3w c11 a3w A a2 ~11~66 aw 

a2 ---- 
=-- 

ax%p a4 a(p3 C* at2 a2 acp 1 [23 

C* a4, A a2 BLg(w)+-- = --- a2 
a2 ax4 C* at2 A ‘66 r2 Lt,B(W) + c* L4(w) 

- L2[Lt,B(w)] + c31 

The following constants and differential operators were introduced in the previous 
equations. 

a20 (C* 
$4 ) = (c* + (32 q33) - + 

+ 91 c66) a2( ) 
ax2 a2 a(pz 

and 
Lt( ) = J4 

a2t ) 
- AC66X 

a40 L4( 1 = 022, + 
(C66 + 2W a4( ) +z a40 

X a2 ax2aq2 a4 acp4 

r41 

c51 

L4,B( ) = [ ig a2 + S(L6 - Fz)a;;;;2 + sll ati 
a4S* a@ 1 
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L8() = L4 [f’4,B()I 

and 

a2t ) c11 
Lt,B = AT + BL4,B() +F 

The general solution of Equations 1, 2 and 3 may be expressed in the same form that 
Yi - Yuan Yu formulated in the isotropic case (Reference 14, Equation 10). 

u = c A eXiX/a 
i cos rncP sin ot 

i 

v = c 
B exix/a 

i sin mcp sin wt. 

I 

(i = 1, 2 . . . . 8) 
i 

[61 

w= x 
c exiX/a 

i cos mcp sin wt 
i 

where 

and 

a is the length of the cylinder 

m is an arbitrarily chosen positive integer equal to the number of 
circumferential waves 

Xi are the characteristic values of the eigenfunctions 

Ai, Bi and Ci are constant coefficients 

The substitution of Equation 6 into Equations 1,2 and 3 leads to lengthy expressions 
which can be solved by numerical techniques (Reference 15). In the following discussion 
the general solution is restricted to relatively long cylinders with a fairly small num- 
ber of longitudinal waves and a relatively large number of circumferential waves. In 
these cases the following assumptions may be made 

(* - *) 
h,Z I a2 - < 1 
m2 A2 

The expression in parentheses represents some combination of the orthotropic constants. 
The use of the absolute value for Xi indicates that it may be imaginary. Inequality 7 is 
the generalized expression of the isotropic case, which was discussed in Reference 14, 
Equation 14. The introduction of Inequality 7 into Equations 1 and 2 simplifies these 
equations significantly. 
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Ai = f ( 1 DAi Ci and Bi = FCi PI 

where 

and 

1 /Cl1 : m2 A c12c66w2 \ 

U=N\yi--C* .2 
I 

N = A2C66 
c* Lo 

2 _ A(C*+C11C66) 
a2C* 

PI 

Inequality 7 introduced into Equation 3 leads to a simplified frequency equation. 

= A3 c66w6 - A2 Tm2 c66 Cl1 + - 
a2 

+ 

+ A~11~~m4+(> +Hm4)Tm2 _ c+mjb, - HC::C*m8 [lo] 

where 

H= 
h; C* sll G* + Cl1 q.4 

12hsa4S* 
and T= 

a2 
WI 

The characteristic value of xi and the coefficients Ci can now be evaluated from the 
boundary conditions as was done in the isotropic case (Reference 14). The displace- 
ment components now contain only four constants due to the simplifications introduced 
by Inequality 7; since Equation 10 is now of the fourth degree, there will be only four 
roots of Ai and four sets of values for Ai, Bi and Ci. The displacement components are 

Fbw 
V = --B 

mace 
WI 

4 
w= 

T 
COB mcp sin ut 

i= 

The roots of xi are expressed as 

!I133 

x1 = -x2 = R 

where R is a real number. 

x3 = -;h = iR 
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In the expression for bending moment 15, the term lav 
a2 aQ 

was omitted to satisfy the 

boundary conditions with the available constants. 

Mx = P53 

It is assumed that the simply supported shell can move freely in the longitudinal 
direction and remains circular at the supports. The boundary conditions for this case 
are 

V =w= M, = 0 

at 

X = 0 or R or both 

The clamped edge condition may be written in the form 

U = v =w2Lo 
ax 

El71 

at 

X = 0 or a or both 

The following three boundary conditions were considered: clamped-clamped, 
clamped-simply supported, and both edges simply supported. The characteristic 
values of R may be expressed from the boundary conditions as 

R = n71 WI 

where the different values of n can be seen in Table 10. 

If the displacement functions are substituted into any of the previously described 
boundary conditions, the derivations lead to a homogeneous equation system in Cl. 
The value of n can be evaluated, taking the determinant of the homogeneous equation 
system equal to zero. The displacement functions were derived from any three equa- 
tions of the boundary conditions. This leads to the same derivations as Equations 19 
through 30 of Reference 14. The displacement functions are exact in the case of both 
edges simply supported, and the solutions are only approximate in the cases of clamped- 
simply supported and both edges clamped (Reference 22). The frequencies of the longi- 
tudinally stiffened cylinder of Reference 18 were calculated and the effect of different 
edge conditions was investigated according to Table 13. The bottom number in each 
box corresponds to the case of both edges simply supported, the middle number to the 
clamped-simply supported case, and the upper number to the case of both edges 
clamped. Due to the approximations involved in the theory, some of the frequencies 
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Table 13. Frequencies (in Hz) for the Iongitudinally Stiffened Cylinder of 
Reference 18 With Different Edge Conditions 

n 7 m 

2 

3 

1.506 2.50 3.50 4.50 
1.25 2.25 3.25 4.25 
1.00 2.00 3.00 4.00 

1579 4233 9171 - 
1149 3412 7557 - 

i 836 2698 6267 - 
1422 2298 4019 6552 
1328 1197 3514 5838 

~ 1276 1750 3059 5178 
2284 2509 3135 4264 

5.50 
5.25 
5.00 

were not computed in Table 13; however, these frequencies are also missing from 
Professor Hoppmannf s test results, Reference 18, Table 11. 

6.5.3 CONCLUSIONS. The significant effects of different edge conditions on longi- 
tudinally stiffened cylinders have been exhibited. The present theory is recommended 
for cases in which the length-to-radius ratio is greater than or equal to 4, because of 
the approximations applied in the development of simplified frequency equations. 
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7/VARIATIONAL METHODS IN THE THEORY OF 
THIN ELASTIC SHELIS 

So far, our investigations have been restricted to simple geometries, where the solu- 
tions of the governing partial differential equations lead to a closed-form solution of 
the problem in terms of some known functions. The presently developed theories can 
be extended to any geometry; however, the mathematical treatment of the problems 
becomes more difficult and only approximate solutions can be developed. Since the 
variational methods have to be applied for partial differential equations, or for other 
cases of ordinary differential equations with variable coefficients, some of the impor- 
tant principles of the variational methods related to these problems will be discussed. 
One of the direct methods is developed by Ritz, another formulated by Gqlerkin. The 
purpose of the following discussion is to explain the restrictions of these methods. 

7.1 VARIATIONAL PROBLEMS CONNECTED WITH DIFFERENTIAL EQUATIONS 

Let us consider first the following ordinary differential equation. 

2 P(X) g c 1 - q(x) Y - f(x) = 0 

where the coefficients p and q are the functions of 
where f is also considered as a function of x only. 
447 can be expressed by 

Y =. Y(x) 

(447) 

the independent variable x, and 
The solution of differential equation 

(448) 

Let us show the equivalence of solution 448 with the solution of the minimum of the 
following integral expression. 

I = i’[P(X)($ + q(x) Y2 + 2 f(x) Y dx 

xO 
] (449) 

where 

x0 d x B Xl (450) 

Let us find the solution y of integral 449, when the expression of the integral is 
minimum and the curve y(x) passes through the given points (x9, y,) and (xi, yl). 
Assume that y(x) is a function giving the integral I a minimum value. Let q(x) by any 
continuous function that is also continuous with its derivatives, vanishing at the ends 
w(-J) = r)(Xl) = 0 - It is assumed that the function y(x) +ar)(x) satisfies the same 
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boundary conditions at the ends as y(x), and that Q is sufficiently small. The proper 
value of CY leads as close as one pleases to the function y(x). Since y(x) is designated 
as the solution of the minimum integral I, for cI1 # 0 (but small), it can be written 

I(Y +W) z I(y) (451) 

0ur interest is in the minimum value of the integral I as a function of 01 with the 
specified value 01 = 0. Therefore one has 

dI(Y +av 
dcr I 

= 0 

a=0 

This equation may be expressed in terms of Equation 449 as follows. 

d 
da 

.X 0 

+Lyv’)2 + q(y +cq2 + 2f(y +Wrl) dx = 0 
1 I a=0 

where 
d 

=dx 

(452) 

(453) 

(454) 

Perform the differentiation and substitute the value OL = 0 into Equation 453, and one 
has 

go I(y + Ml) 
x1 

= 2 J- (PY’V’ + qyrl + frl) dx (455) 
a=0 x0 

This integral can be written by the customary symbolical notation. 

61 = &I(y+o!r)) = 0 
ceil 

(456) 

Let us express the first term of Equation 455 in a different form. For this purpose 
integrate these terms by parts. 

x1 x=x 

f 

1 x1 
PY’rl’dx = (py’77) - 1 &PY%(X) dx 

xO x= x0 “0 

According to our basic definition the function ?j(x) is zero at the points x0 and x1 or 

(457) 
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I 

Therefore 
x=x 1 

(PY’77) = 9 
x= x0 

Equation 457 can be expressed by the substitution of Equation 459 as 

x1 s xl 
py’?Abc = - / &PY’)t)(X) dx 

xO xO 

The substitution of Equation 460 into Equations 455 and 456 yields 

x1 
61= -2 Jf $CP(X,Y~l - qy - f Q(x) dx = 0 

xO 
1 

(459) 

(469) 

(461) 

The last integral expression must be equal to zero, whatever the functionTl(x) satis- 
fying the conditions indicated above. This condition is possible only if the function 
y(x) satisfies the differential equation: 

$(PY’) - qY -f = 0 

Figure 92 illustrates the previous theory. 

Figure 92. Concept of Variational Integral 
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(462) 

It can be proved according to 
Reference 21, page 243, that the 
integral 449 is an absolute extremum 
requiring the following conditions. 

P(X) ’ 0 (463) 

for 

xosxxx 1 

The satisfaction of Condition 463 
leads to the uniqueness and exactness 
of the solution y(x) . (For further 
information see Reference 21, page 
244.) 

It is also useful to note that any 
linear differential equation of the 
second order is the Euler equation 
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for some integral type (Equation 449). For this reason it is sufficient to show that 
such an equation can always be reduced to the form of Equation 462. To show this, 
consider the equation 

py‘ + ry’ - qy = f (464) 

Multiply Equation 464 by $-rp 
r- ‘dx 

and it can be calculated easily that 

The form of Equation 465, after the multiplication, is 

This last equation may be written in the form of Equation 462. 

&P*Yl - q*y = f* 

where 

p*(x) = P(X) l 
k 

yz’& 

a*(x) 

J-..” 

= q(x) l e 

f*(x) 
Jddx 

= f(x) . e p I 

( 465) 

(466) 

(467) 

(468) 

It is therefore proved that Equation 467 is in the form of Equation 462. 

7.2 RITZ’S METHOD 

One of the approximate techniques to solve differential equations is the Ritz method. 
Application of the method will be shown by the solution of the previously discussed self- 
adjoint differential equation. 

YY) = $(PY? - qy - f = 0 (469) 

under the conditions that 

Y(X,) = Y(-j and Y(Xl) = Yl 
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It is also assumed that the previously stated condition is valid, as follows. 

P(X) ’ 9 for x0 d x r x1 (463) 

The solution of the differential equation 469 is the same as the solution of the mini- 
mum integral, as it was already proved previously. (For further information see 
Equations 449 through 462.) 

x1 
I(Y) = 

s[ 
(PY*2 + qy2 + 2fy)dx 

xO 
1 WV 

For mathematical convenience, let us assume that the end conditions are homo- 
geneous . 

Y(O) = Y(R) = 0 (471) 

If this is not the case, it can be contrived by introducing for y in Equation 469 a new 
unlmown z defined by 

X 
Y = = + aY1 (a - 4 

+ -Yo a 

It is now assumed that the approximate solution may be expressed in a form 

N 
Y, = c akq&x) 

k=l 
(473) 

where the functions of (pk(x) satisfy the prescribed boundary conditions and the value N 
expresses the number of terms in the series. The substitution of Equation 473 into 
Equation 449 leads to 

a a 

I(Y,) = f (P YA2 + qy,” + 2fy,)dx = P(~y&12 + qtcakQlJ2 
0 

+ 2fcak’pk]dx = kglAk,sakas + 2 g Bkak 
= f 

(474) 

where 

a 

Ak,s = As,k = f (Pcp$& + qcpk%Qdx and E$=)f%dx . . . . (475) 
0 0 
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Differentiate expression 474 with respect to as, and one has, in two forms, 

where 

or 

1 a ItYn) A -- = 
2 aa, / (PYAQ: + qYnQs + fQs) do = 6 

0 

s = 1,2 . . . N 

N 

c t-‘&% + Bs) = 0 
k=l ’ 

(476) 

(477) 

where 

s = 1,2 . . . N 

In the case of free vibration problems the function f E 0 and therefore B, p 0. In 
this case the Ritz method yields to the following equation. 

N 

k=l Ak,sak = ’ c (478) 

where 

s,k = 1,2 . . . N 

Equation 478 represents a homogeneous equation system, and the nontrivial solution 
of this system requires that the determinant of the system be zero. 

detjAk,sl = 0 (479) 

The unknown frequencies can be calculated from determinant 479. 

The application of Ritz’s method is restricted to the condition 463, which cannot be 
satisfied in some problems. 

7.3 GALERKIN’S METHOD 

Another approximate technique has been developed by B. G. Galerkin. His method has 
some advantages over Ritz’s method for certain problems. Let the previously men- 
tioned differential Equation 469 serve as an example. Let us integrate the first term 
of Equation 476 by parts, using the fact that Qk and yn are equal to zero at the ends. 

a a a 

$ PY;Q; d?c = CPY$Ps 
0 cl o - 

0 
&PY;)Q, dx = -J+PY;)Qs dx 

Odx 
(430) 
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since 
CPY&$ = 0 

The replacement of the first term in Equation 476 by expression 480 and utilizing the 
brief notation of Equation 469, equation system 477 is expressed in a simple form. 

a 

/L 0 
2 (PYJ - qyn - f]Qsdx =/4Yn)Qsb = 0 (481) 

where 

s = 1,2 . . . N 

Galerkin’s method can be formulated by Equation 481. The transformation of equa- 
tion system 477 into Equation 481 given above shows that in application to the given 
problem the methods of Ritz and Gale&in lead to one and the same approximate solu- 
tion, although the method of Galerkin makes possible the simpler and more direct 
setting-up of the respective system. However, the fundamental advantage of the 
method of Galerkin is that in applying it, one does not use the connection between the 
given boundary problem and the variational problem. It can therefore be employed in 
the case of any equation of second order. It does not require the preliminary reduc- 
tion of the equation to self-adjoint form, nor necessarily the satisfaction of Condition 
463, either. 

The previous ideas can be extended to two variables. Let us investigate the solution 
of the following equation. 

L(u) = 0 (482) 

where L is some differential operator in two variables, the solution of which satisfies 
homogeneous boundary conditions. Let us assume that the approximate solution can 
be expressed in the following form. 

N 
U(X, y) = C ciQi txS Y) (483) 

i=l 

where (pi(x, y) is a certain system of functions, chosen beforehand, satisfying the same 
boundary conditions and where Ci are undetermined coefficients. The functions Qi(x, y) 
are considered to be linearly independent and to represent the first N functions of 
some system of functions that is complete in the given region. In order that ii(x,y) be 
an exact solution of the given equation, it is required that L(i) be identically equal to 
zero; this is equivalent to the requirement of the orthogonality of Expression L(G) to 
all the functions of the system Qi (i = 1, . . . N . . . ) . However, having only N constants 
Cl, c2, l **, CN satisfies only N conditions of orthogonality. Stating the problem in 
terms of mathematics, 
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CjQi (X9 Y) 1 Qi (X, Y) &dY (484) 

where 

i,j = 1,2, . . . . N 

which serves to determine the coefficients Ci. 

It can be stated that Galerkinf s technique has no connection in general with varia- 
tional problems. This is therefore a perfect universally applicable method. 

7.4 GALERKIN’S METHOD APPLIED FOR EIGENVALUE PROBLEMS 

Let us assume the following differential equation. 

L(Y) = -$P(X) Y'l - qy + xy = 0 (485) 

with the following boundary conditions 

Y(O) = Y(i) = 0 (4861 

It is also assumed that the expression X is the function of the unknown angular 
frequencies. 

h = X(On) (487) 

IM us assume that the solution can be expressed as 

k=l 
(488) 

where qi is a complete system of functions that satisfy conditions 486. It is assumed 
that instead of identical satisfaction of Equation 485 only the orthogonality of the left 
side will be satisfied for functions Cpl, . . . , qN. This assumption leads to the following 
equation. 

R a 
/ L (Yn)Qj dX = 
0 

/I 
0 

gLPtxJ Yil - Stx)Yn +‘Yn)Qj dX = O (489) 

where 

j = 1,2, . . . . N 
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The substitution of Equation 488 into Equation 489 yields 

N 

c (%,j , 
i=l 

+ Xyi j)ai = 0 

where 

i,j = 1, 2, . . . . N 

and 

CY. = 
l,j 

a 
Y- i,j = f 

CpiQj dX 

0 

(490) 

(491) 

Equation system 490 can also be written in another form. 

N 

c A. .a. = 0 
i=l 193 1 (492) 

where 

A. l,j = (5 j + hYi, j) (493) , 

The system of Equation 492 is a homogeneous system of N equations in N unknowns. 
It has a nontrivial solution only when the determinant of this system equals zero. 

tal 1 
, 

+ XYl,l) * * l (oh,1 + xYn,2) 

D= . = 0 . (494) 

The unknown frequencies can be evaluated from determinant 494 as Xl, x2 . . . AN. 
For each X =X, systems of equations, Equation 492 will have a nonzero solution 
aim), which will give us the function that corresponds to 

N 
Y,W = c %Qitx) 

i=l 

It is understood that these functions are determinate only to an arbitrary constant or 
accurate to a factor. 
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The unknown coefficients ai can be now calculated from equation system 492. 

Al ,l al + A2,ia2 + . . . + An,lan = 0 

A1,2a1 + A292 + l " + An,a% = O 

. 

. 

. 

Al ,n al + A2,,a2 + . . . + Annan = 0 
J 

(495) 

where expressions AI,~, . . . , An,n were calculated by a specified frequency X, = 
‘lOmJs , 

7.5 A REVIEW OF PENZES' AND BURGIN’S PAPER: “FREE VIBRATIONS OF THIN 
ISOTROPIC OBLATE-SPHEROIDAL SHELLS” (REFERENCE 20) 

7.5.1 SUMMARY. The theory of free vibration of thin isotropic, elastic shells has 
been developed by Love. He found that the characteristic mode shapes for spherical 
shells are described by associated Legendre functions. 

Hoppmann discussed both free and forced vibrations of a thin elastic, orthotropic 
spherical shell, which is the general case of Love’s spherical-shell problem. Baker 
conducted experimental studies on a spherical shell and showed the physical existence 
of the two sets of frequencies that were first theoretically predicted by Lamb (Refer- 
ence 13). 

There exists extensive literature on free vibrations of spherical shells, but only a 
few papers deal with the free vibrations of ellipsoidal shells, and numerical results 
are lacking. 

The problem of the free vibration of a thin isotropic, oblate spheroidal shell has 
been solved by Galerkin’ s method. Membrane theory and harmonic axisymmetric mo- 
tion have been assumed in order to derive the differential equations of motion. This 
derivation leads to two ordinary differential equations with variable coefficients that 
can be reduced to one ordinary second-order differential equation with variable coeffi- 
cients . The resulting eigenvalue problem is solved by Galerkin’s method. It is shown 
that Gale&in’s solution for the oblate spheroid yields the exact solution for the sphere 
as the eccentricity of the oblate spheroid goes to zero. It is also shown that two sets 
of frequencies exist for the oblate spheroidal shell. After the frequencies are deter- 
mined, the tangential displacements are obtained as solutions of a homogeneous system 
of equations . 

The normal displacements were calculated based on the known tangential displace- 
ments from the second equilibrium equation. 
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7.5.2 EXPLANATION OF THE THEORY AND THE NUMERICAL RESULTS. I& us 
assume that the deformation in a vibrating oblate, spheroidal shell is momentless; that 
is, that membrane-type stresses are of major concern. Let us also assume axi- 
symmetric vibrations. If we then introduce inertia forces at the surface of the shell, 
the equations of motion may be written as follows (see Figure 93, Equations 105 and 110). 

@/WP, N@> 
a2V - Nerlcos @ = pro rlhz 

r. NQ + rl sin # Ne = p r. ri h ( a2w/a t2) 

Cl1 

Cal 

Figure 93. Element of Shell 

where p is the specific mass density, 
v is the tangential displacement (tangent 
to meridian) , positive toward north pole, 
w is the normal displacement, positive 
toward center, h is the shell thickness, 

rO = r2 sin @ 
I 

rl = (1- e2) a 
2 3/2 b’s’ (l-e2 COB @) 

a 
r2 = 

(l-e2 c~s%)~‘~ 

e is the eccentricity of an oblate spher- 
oid, a is the major axis of an oblate 
spheroid, and N$ , No equal forces per 
unit length of the shell. 

The detailed calculation of Equation 3 can be seen by Equations 74, 79 and 80. 

The forces expressed in terms of strain are from Equations 85 and 89. 

% = LEh/(l -v2)1(Q + Wg) c41 

Ne = [E h/(1 - v2)](ce + ~9) c51 

where E is the modulus of elasticity and u is Poisson’s ratio. The strains in terms of 
displacements may be written from Equations 140 and 142 

% = (i/rl)C(av/ag - WI q = (l/r2)(v cot # - w) k33 
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Substituting Equations 3 and 6 into Equations 4 and 5 for F$, NS and then substututing 
the values of Na , NS into .Equations 1 and 2, the equations of motion are obtained in 
terms of displacements as follows. 

(1 -X 
22 

) (1 - e 223 2 
x ) (a v/aX2) - 2x(1 -x2)(1 - e2x2j2 

x Cl +(l - 2x2)e2] (av/ax) - (1 - e2x2) vs (1 -u)x2 
I 

- [(l + V) x2 - Vx41 e2 (1 - e2) v + (1 - x2)3’2(l - e2x2)2 
I 

x Cp +u) - p +x2)e21(aw/aq -x(1 -X 2 l/2 ) (1 - e2x2) 

and 

X [4(1 - x2) - (2x2 - 3x4 -t l)e2]e2w 

= ~(1 - e2)2(1 - x2)(a2v/at2) C71 

-(l - x2)(1 - .2x2) 2cu (1 - e2) + (1 - e2x2)l(av/ax) 

+ x(1 - .2x2) CU(l - e2x2) + (1 - e2)1(1 - e2)v 

- (1 
2 l/2 - x ) (1 - e2x2) CZV(l - e2)(1 - e2x2) + (1 - e2x2)2 

+ (1 - e2)2] w = A(1 - e2)2(1 - x2j1/2(a%/at2) [81 

where 

x = cos @ L-91 

and 

A = p[(l -u2) a2/E] = (1-T;) B Cl01 

In solving the equations of motion (Equations 7 and 8) for a complete shell, it should 
be noted that there are no physical boundary conditions. The conditions to be imposed 
are that the displacements should be single-valued and bounded at every point of the 
oblate wheroid including the north and south poles. 

Let us assume separation of variables, and let 

V(xvt) = Vn(X) T,(t) W(X, t) = W,(X) T,(t) 

Assuming harmonic motion, 

‘- 2 d T&It2 = - 2 T, 

Cl11 

Cl21 

where pn is the angular frequency of the shell. 

172 



Substituting Equations 11 and 12 into Equations 7 and 8, the two partial differential 
equations were reduced to two ordinary differential equations with variable coefficients. 

Equation 8 may be expressed in the following form 

[ 
dvn wn = -a(x) yIjg + Btx) vn 1 /Ytx) Cl31 

where 

WX) = (1 - x2)(1 - e2x2)211Y(l - e2) + (1 - e2x2) ] 

B(x) = x(1 - e2x2)(1 - e2) CY(l - e2x2) + (1 - e2) 3 

Y(X) = (1 - x2y2 
I 
(1 - e2x2) C2v (1 - e2)(1 - e2x2) 

2 22 +(1-ex) + (1 - e2)21 - A(1 - e2)2pn2) 

Cl41 

c151 

L-161 

The substituion of w, into Equation 7 yields an ordinary differential equation for vn as 
follows. 

El(W2vn/dx2) - E2(X)(dVn/k) + E3(x) Vn = 0 L171 

where 

E1 = (1 - x2)2(1 223 2 -ex) Y 

2 3/2 -(l-x) (1 - e2x2)2C(l +v) - (v+x2)e21cfy cl81 

E2 = 2x(1 - x2)(1 - e2x2)2[1 + (1 - 2x2) e2]y2 

- (1 
2 3/2 

-X) (1 - e2x2)2C(l +v) - (v +x2)e21 

x Cy@ -a’) + ay’l - x(1 - x 2 l/2 ) (1 - e2x21 

X c4(1 - x2) - (2x2 - 3x4 + 1)e2] e’cry Cl93 

and 

E3 = A(& e2)2pn2(1 - x2) y2 + (1 - x2)3/2 (1 - e2x2)2 

X [(l +u) - (u + x2)e21(8’y-By’) - (1 - e2)(1 - e2x2) 

x u+(l I -u)x2 - [(l +u)x2 -vx41 e2 
1 

- x(1 -x2y2 (l-e2x2)C4(1-x2)-(2x2-3x4+l)e2]e28y c201 
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where 
I 

= WW [213 

The free vibration of the thin oblate spheroidal shell is reduced by Equation 17 to a 
second-order differential equation with variable coefficients. Owing to the complexity 
of the problem, a closed-form analytical solution does not seem to exist. Galerkinf s 
method was applied to solve Equation 17 as one of the most feasible methods to employ 
for this problem. 

The detailed explanation of Gale&n’ s method can be seen in Section 7.3 and 7.4. 

Galerkin’ s Method. Equation 17 may be expressed by a linear differential operator 
and the undetermined tangential displacement vn as follows. 

L(v,) = 0 c221 

The linear differential operator can be written in the form 

L( ) = El(d2/b2)( ) - E2(d/cW ) + E3( ) c231 

The theory of Section 7.3 and 7.4 was applied for the present problem. The solution 
was developed based on Equations 482 through 489. The solution of Equation 22 may be 
expressed in the form 

N 
Vn(X) = Cai’Pi(X) 

i=l 
[241 

where the ai are undetermined coefficients and where Cpi(X) is a certain system of func- 
tions satisfying the boundary conditions and being the first N functions of a system that 
is complete within the range -1 i x 2 1. The condition that L(V) be identically equal to 
zero is equivalent to the requirement that the expression L(V) be orthogonal to all the 
functions of the system vi(X), i = 1, . . . , N. We chose as the systemcPi(X) the asso- 
ciated Legendre functions of order 1, [Pi’(X)] , since these functions represent the 
exact analytical solution for the sphere. 

The substitution of Equation 24 into 22 yields to the orthogonality condition of the 
following N linear equations for the undetermined coefficients ai. 

N +1 

w 
L[Pf(X) 1 . Pl(x)dx ai = 9 

i=l -1 1 
[25] 
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where j=l, 2, . . . . N. Equation 25 can be written in another form. 

N 

c Aij ai = 0 
i=l 

where j = 1, 2, . . . , N, and 

+l 
Aij = 

f 
LCPi+x) 1 Pjl(X) dx 

-1 

L.261 

[271 

The condition for the existence of a nontrivial solution of the system of homogeneous 
equations (Equation 26) represents the frequency equation for the problem, which can be 
written in a determinant form. 

det (Aij) = 0 c281 

Properties of det Aij 

a. Sphere. For the case of thin spherical shell e = 0, the differential operator L is 
reduced to 

Lt ) = (1 - x2)(d2/dx2)( ) - Zx(d/dx)( ) + La- (l/l - x2,1 ( ) 

where 

c291 

A, = [(2 - Bpn2)(Apn2 + 1 - u)/(l -U - Bpn2)] II301 

The determinant can then be written 

(A, - 2) 0 0 . . . 

0 (An -6) 0 . . . 
d&CAijI = 

0 0 (‘n -12) 
= 0 c311 

. . . 
. . 
. . . . 

Equation 31 yields the exact closed-form solution for the thin spherical shell. 

b. Oblate Spheroidal Shell. It can be easily shown that, in the expression of Aij 
according to Equation 27, 

1 
Aij = 

J 
LCPi+x)l P;(x) dx 

-1 
c321 
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the integrand is an odd function wherever i+j is odd; and in that case, 

A.. = 0 
11 [331 

The determinant of the system of homogeneous equations (Equation 26) can be 
expressed in the following form. 

detCAij(pn) I = 

A1l(pn) 0 A3 l(Pn) 0 . . . 

0 A2 2(pn) 0 A&Pn) * . * 

A13(Pn) 0 A33(Pn) 0 . . . 

0 A24(pn) 0 A44(~n) . . l 

. . . . 

. . . . 

. . . . 

= 0 c341 

Mode Shapes of Oblate Spheroidal Shell. The tangential mode shape vn can be obtained 
from Equation 24 and 26. The even modes can be separated from the odd modes by 
observing Equation 34. The eigenfrequencies pn, satisfying Equation 34, were found 
digitally on an IBM-7094 computer. 

For any particular solution pn, the undetermined coefficients ai can be determined 
up to a multiplicative factor. By arbitrarily setting an = 1, the ai i=l, 2, . . . , (n-l), 
(n+l), . . . . N are uniquely determined. 

Numerical Example. For numerical illustration of the theory, a thin oblate-spheroidal 
shell having the following properties is considered: major axis a = 60. in., minor axis 
b = 43.5 in., eccentricity e = 0.68874, Poisson s ratio U = 0.28, modulus of elasticity 
E = 2.8 X lo7 lb/in.2, and specific density p = 7.34 X 10m4 lb*sec2/in.4. For compari- 
son, a spherical shell is also considered with radius a = 60 in. 

Angular Frequencies. The frequencies of the oblate spheroidal shell are calculated 
from Equations 27 and 34. The frequencies of the spherical shell are calculated from 
Equations 30 and 31. Table 14 shows the results where the numbers in the appropriate 
columns represent the frequencies of the oblate-spherical shell and the spherical shell. 

Table 14. Angular Frequencies 

Unbounded Set pn (rad/sec) 
~ 

Oblate 
Sphere Spheroid 

6,644.6 7,869.l 
9,185.l 10,774.o 

12,290.8 14,269.g 
__.- .~ 
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Table 15, Convergence of Frequencies 
of Second Mode 

N 
v2(x) = C a Pi(x) 

Unbounded Set i=l i ’ 

N pi (rad/sec) A 

2 14,120 
4 11,770 
6 11,070 
8 10,840 

10 10,780 
12 10,774 
14 

2350 
700 
230 
60 

6 

Table 15 shows the convergence of the 
frequencies with increasing numbers of 
terms of the second mode. Figure 94 
shows the frequencies as a function of the 
eccentricity for the second mode of the 
unbounded set. 

Mode Shapes. The mode shapes were 
calctdated from Equations 24 and 25. 
The coefficients ai are tabulated in Table 
16 for the unbounded set. Figure 95 shows 
the tangential and normal mode shapes of 
the unbounded set for mode numbers 
n = 1,2,3. 

11,000~ 
5 
ii 
$ 10,600- 

g 

G 10,200- 
z1 
g 
2 9,800- 
Frr 

3 3 9,400- 

g 
4 

9,000-l I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ECCENTRICITY 

Figure 94. Second Mode, Unbounded Set. 8 Terms Approximation 
N 

Table 16. ai of Unbounded Set vn = c aiP:(x) 
i=l 

x I 2 3 4 5 6 7 S 9 10 11 12 13 1, 15 

I 1.w 0 1.1494 0 9.7168 0 -I.3053 0 - I.5699 0 -9.0184 0 --5.1012 0 -lAMI 
x10-’ x10-I x10-I x10-a x10-4 x10* x10-’ 

2 0 1.00 0 2.2436 0 3.7382 0 4.5001 0 -4.7106 0 -3.1497 0 . . . ..* 
x10-1 x10-9 x10-a x10-t x10-1 

3 -6.8844 0 1.00 0 3.2821 0 7.9366 0 1.1622 0 2.3651 0 1.35186 0 . . . 
x 10-1 x10-I x10-9 x10-. x10-a x10-a 
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I 1 I I I 

0 0.5 1.0 1.5 2.0 2’.5 310 315 
@ RADIANS 

Figure 95. Mode Shapes of Unbounded Set. ---: VI, W1. 
----: v2, w2. -: v3, w3 

7.5.3 CONCLUSIONS. For the free vibration of thin isotropic, oblate spheroid 
shells Galerkin’s method was employed, which involves a series that converges rapidly 
for small eccentricities; the convergence is also satisfactory for larger eccentricities. 
The existence of two sets of frequencies (bounded and unbounded) for a complete shell 
has also been shown. 
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8/A LIST OF AVAILABLE COMPUTER PROGRAMS 

The following list includes the available computer programs, which are related to 
several of the references discussed previously. 

1. Reference 14, Digital Program tocalculate Orthotropic Cylindrical Shell 
Frequencies, Convair Memorandum CD-67-033-SPS, 30 March 1967. 

2. Reference 15, Natural Frequencies of Modal Characteristics of Thin Vibrating 
Circular Cylinders, Program No. 3603, Convair Memorandum CCD-Prop-022. 

3. Reference 20, Oblate Spheroidal Shell, Frequencies, Prow 
Oblate Spheroidal Shell Mode Shapes, Program No. 3737B. 

179 



- 



S/REFERENCES 

I - 

1. Lord Rayleigh, Theory of Sound, 2nd Edition, Dover, New York, 1945. 

2. H. Lamb, ,rGn the Vibrations of a Spherical Shell, ‘( Proc. London Math. Sot. 14, 
pp. 50-56, London, 1883. 

3. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th Edition, 
pp. 512-552, Dover, New York, 1944. 

4. S . Timoshenko and S. Woinowsky-Krieger, The Theory of Plates and Shells, 2nd 
Edition, McGraw-Hill Book Co, 1959. 

5. S. Timoshenko, Theory of Elastic StabiliQ, McGraw Hill Book Co., 1961. 

6. W. Fliigge, Stresses in Shells, 2nd printing, Springer-Verlag, 1962. 

7. A. L. Goldenveizer, Theory of Elastic Thin Shells, Pergamon Press, 1961. ~~-_ 

8. E . T. Whittaker and G. N. Watson, A Course of Modern Analysis, 3rd Edition, 
Cambridge at the University Press, 1920. 

9. Bateman Manuscript Project (California Institute of Technology), Higher Trans- 
cendental Functions, McGraw-Hill Book Co. Inc., Volume 2, 1953-55. 

10. T. M. MacRobert, Spherical Harmonics, Dover Publications Inc., 1948. 

11. A. E . H. Love, ItThe Small Free Vibrations and Deformations of a Thin Elastic 
Shell,rr Phil. Trans. Roy. Sot. 179, pp. 495-537, 1888. 

12. H. Lamb,‘rGn the Vibrations of a Spherical Shell;’ London Math. Sot . Proc . 14, 
pp. 51-56, 1883. 

13. W. E . Baker, ‘tAxisymmetric Modes of Vibrations of Thin Spherical Shell, 1, 
J . Acoust. Sot. Am. 33, ~~~‘1749-1758, 1961. 

14. Yu, Yi-Yuan,f’Free Vibrations of Thin Cylindrical Shells Having Finite Length 
With Freely Supported and Clamped Edges,“J. Appl. Mech. 22, pp. 547-552, 1955. 

15. K. Forsberg, ‘%-Zluence of Boundary Conditions on the Modal Characteristics of 
Thin Cylindrical Shells,“AIAAI. 2, pp. 2150-2157, 1964. 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

Arnold and Warburton, lrFlexural Vibrations of the Walls of Thin Cylindrical Shells 
Having Freely Supported Ends, I1 Proc. ROY. SoC. (London) A197, p. 238, 1949. 

W. H. Hoppmaim, II,llElastic Compliances of Orthogonally Stiffened Plates:’ Proc. 
&DC. Exptl. Stress Anal. 14 No. 1, pp. 137-144, 1956. -3 

w. H. Hoppmann, II,l%ome Characteristics of the flexural Vibrations of Orthog- 

onally Stiffened Cylindrical Shells 11’ J.Acouat, &a. Am. Vol. 30, No. 1, pp. 77-82, 
January 1958. 

L E . . Penzes, “The Effect of Boundary Conditions on Flexural Vibrations of Thin 
O&.hogonally Stiffened Cylindrical Shells,” J. Acoust. SOC. Am., No. 13807, 12.7, 
October 1967. 

L. E. Penzes and G. Burgin, ‘Free Vibrations of Thin Irotropic Oblate-Spheroidal 
ShAls, ” J. Acoust. SOC. Am., Vol. 39, No. 1, pp:8-13, January 1966. 

L. v. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis, 
Interscience Publisher8 Inc., New York, 1958. 

Discussion of Reference 14 by G. B. Warburton, J.. Appl. Mech. 23, pp. 484-487, 
1956. 

182 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION POSTAGE AND FEES IAID 
WASHINGTON, D.C. 20546 NATIONAL AERONAUT13 AI 

SPACE ADMINISTRA'~ION 
0 OFFICIAL BUSINESS 

--e. ?&I, : 

“The aeronazrtical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansiogz of human knowl- 
edge of phenomerza in the atmosphere and spnce. The Administration 
shall provide for the widest practicable azd appropriate dissehzatio?a 
of information comer&g its actizlities and the .resu/lts thereof.” 

-NATIONALAERONAUTICSANDSPACE ACTOF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 

ti contribu 

NAT I 

on to existing knowledge. -I 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

ONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 


